NOAA Technical Memorandum NMFS

Q %
& N4 kY MARCH 1991
s
&

DOCUMENTATION OF THE 1980 DATA VERIFICATION PROGRAMS
AND COMMON SUBROUTINES FOR FIXED-FORMAT DATA:

PORPOISE DATA MANAGEMENT SYSTEM

Charles W. Oliver
Robert L. Butler

NOAA-TM-NMFS-SWFSC-157

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service

Southwest Fisheries Science Center

MOAA Technical Memorandum NMES

The Hational Oceanic and Atmospheric Administration (MOAA), organized in
1970, has evolved inla an agency which eslabliskes nalional policies and
manages and conservas our oceanic, coastal, and atmospheric resources. An
organizational element within NOAA, the Office of Fisheries is responsible for
fisheries policy and the direction of the Mational Marine Fisheries Service
(NMFS),

In addition to its formal publications, the NMFS uses the NOAA Technical
Memorandum series to Issue infarmal sclentific and technical publications when
complete formal review and editorial processing are not appropriate or feasible.
Documenis within this series, however, reflect sound professional work and may
be referenced in the formal sclentific and technical literature.

NHOAA Technical Memorandum NMFS

This TR fasried & s bod onir-oniatien e rmely oossoronlon o prolimssery resulls, nlerf repdh o
e L | o T W] B P A0 s it eyt b ral e e boria il -udﬂi-diﬂiu.

MARCH 1991

DOCUMENTATION OF THE 1980 DATA VERIFICATION PROGRAMS
AND COMMON SUBROUTINES FOR FIXED-FORMAT DATA:

PORPOISE DATA MANAGEMENT SYSTEM

Charles W. Oliver
Robert L. Butler

National Oceanic and Atmospheric Administration
Mational Marine Fisheries Service
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, California 92037

NOAA-TM-NMFS-SWFSC-157

U.S. DEPARTMENT OF COMMERCE

Rober A Mosbacher, Secretary

HNational Oceanic and Atmospheric Administration
John A, Knauss, Under Saecretary for Coeans and Almosphere
MNational Marine Fisheries Service

William W, Fox, Jr., Assislant Administrator for Fisheries

Table of Contents

I. Introduction Fessasisaasteanananans sasrsatrmnnaa
Developmental history (1971-1%80) shtsrsanmnsane
IT. Data verification on fixed-field formatsc....
Error report outputciccsvrnscscnnnscansas sasesanwa

Input requirements to edit programsccosvasasens

III. The data wverification system for the Porpoise Data

Management System (1971-1980) frssscsrearannanna
Error report formats for phases 1-3eccvccnnccnas .a
Phase 1 processing FE T e s A s A L tasEsanen
Fhase 2 PrﬂﬂEEEing G R R R EE R R R R TR R omE E R R R # k8w s s s s ke
FhEEE 3 PrnﬂﬂESing e B A F E S RS S s wEEomow
Iv. Brief description of 1980 common subroutines and data
hﬂsﬂg W R ow R R F R F S S SRR EEOE R TR OEOE R W # f § & & & &5 5 A E T EE W R oT W L
V. NHamed common block ERRORcvesscsananncsnnns saasrenaa

vI. Logical hierarchy for the field verification common
subroutines: ERRLOG.DP, ERRFIL, ERRCHK.DPF, WRAPUP.DP,

and Calling PrOgrameE .. sssssssssssnannmasss e e B AR e
VII. Data flow and field reference SeqQUENCE:ssessnmnnnas
VIII. Error counts (ECS80DB) and errer statements (ES20DE)
dﬁtab!EEE momomow & odFEEEFFE SRR EE R m R Rk R FEE s EEmE R R F R R
Errﬂr CoOUNts .- TR R R R Y R R R R -
Error statemeénts ...csscsscanvenses e R R - n
IX. Acknowlegments and references sssesremsrnvanas saas

ippendix 1. How to read intra-variable legic: explains the
blank, range, logical error coding utilized
during 1974-1978 for edit programs saae

Appendix 2. Conversion considerations for the 1980 common
subreutines writtemn in Computer Sciences
Corperation (CSC) Fortran language:cesess-s

T

12
14
17
17
20

24

aaq

il

36

38
39

40

41

g

Table of Contents

Page

Appendix 3. The main edit program (CSEDIT.E81) and sequencing

Figure

Figure

Figure

Figure
Figure
Figure

Figure

4.
5.

6.

subroutine (CS00CS.81) utilized on data
collacted on the 1981 Cruise Specification
Rﬁcnrd ﬂat‘a fnm ® F R A SR ew #® § & B & F N a2 Rk ow R EE R o oEw - & ;7
1981 Cruise Specifications editing criteria for
blankness, character values, variable ranges,
E-na lﬂgicﬂl ern omowmoEFodEEFEREE oW LR R R BN B B O) dg
Listing of 1981 CSEDIT.FOR main edit program 54

Listing of 1981 CS0081.FOR sequencing subroutine. 66

List of Figures

Page
Data verification calling structure and hierarchy
flawchart ‘Ill".lll'.iill-!-‘-!!!.‘ili‘i-ﬂlf ------- * B & & 3 & = m 11
Common subroutine calling sequence and hierarchy
flﬂ'-ﬂ:hﬂrt A" B EEmoEE FF R E RS S EoE oW E AR R AR R oE R R FEE R EE N 1'5
Hamed common block ERROR variable cross reference
with the common subroutines ssarnsasnas 285
Pha.EE 1 flw‘::hart " s owmk FE R R FEE R E W AR F EE R B EoEmoE ® F RS Eow 33
PhaEEE flmhﬂrt o oE R AR N E m @ E F RS E B R R omoE & & ¥ 8 F B & momow 34
PhaEE 3 leEhﬂI’t‘. & F RS RS womE R EEEE NN R Em W N I N A 35

1981 Cruise Specification Record data form 48

ii

Documentation of the 1980 Data Verification Programs
and COMMON SUBROUTINES for Fixed-Format Data:
Porpoisze Data Management System

Charles W. Oliwver and Robert L. Butler

I. INTRODUOCTION

This document is provided as a description of the 1980 computer-
ajided data wverification system devised for the Porpolse Data
Management Group (PDMG), Southwest Fisheries Science Center,
National Marine Fisheries Service, La Jolla, cCcalifornia. The
system evolved from simple manual review procedures utilized
during the early 1970s to the package of FORTRAN subroutines,
edit programs, and associated procedures described herein.
Although parts of the system were in use as early as 1974 and
there were numerous modifications and expansions of the systems
features during 1975-1978, we will describe the system
implemented during 1979% and currently in use. The system was
implemented during 1979 by the Automated Data Frocessing
operations group and the Porpoise Data Management group with
coding and refinement provided by contract personnel of FPotomac
Rezearch Incorporated, McLean, Virginia, and Computer Sciences
corporation (CSC), El Segundo, California. Minor revisions to the
computer programs and subroutines were made to the 1979
implementation in order to implement the package on different
computer systems and FORTRAN compilers, and additional
subroutines have been added to the package to facilitate specific
data verification needs.

This document describes the approach we developed to assist in
the verification of data, and describes the 1980 package of
FORTRAN subroutines (referred to by us as COMMON SUBROUTINES) we
developed to create computer programs te implement this approach.
Additional deocumention, including a detailed description and
listing of each of the 1980 common subroutines, is available in
an internal report archived at the SWFSC (Butler and Oliver,
1980). We provide the editing criteria specified for one data
ferm and the edit program code for this application in Appendix
3. More complex applications are available through the Porpoise
Data Management Group at the SWFSC.

our primary objectives in developing this system were to utilize
computers to locate and identify potential problems with a
variety of data formats used to record field data, and to provide
computer programmers with a package of subroutines by which they
can easily create, and modify, edit programs for different data
formats. The specific editing criteria is cbtained from a variety
of sources, but the system allows these criteria to be easily
altered. The modular approach we implemented applies to the edit
criteria’ as well as to the functions of the common subroutines.
Secondary objectives were +to provide some insight intoc the
frequency of errors detected and maintain documentation on the
actual editing criteria specified by data format and year.

DEVELOFPMENTAL HISTORY (1971-1980)

The Porpoise Data Management System developed from an individual
research project during the late 19608 (Perrin 19875). The
research project identified the incidence of marine mammal
mortality which occurred incidental to purse seine sets on
porpoise schools by United States fishery for yellowfin tuna.
with the enactment of the Marine Mammal Protection Act of 1972,
the NMPFS was directed to increase efforts at monitoring the
incidence of porpoise mortality, investigate methods of reducing
the kill, and assessing the populations of marine mammals
affected by the fishery.

Beginning 4in late 1971, additional observers were placed aboard
fishing and research vessels to gather data on the number of
marine mammals which were killed during each fishing net set. The
observed data for each cruise was compiled inte a "cruise
report”, and at the end of each trip, mortality tables were
produced and typed from the cruise reports. The first observers
were placed aboard tuna vessels during 1971, when six fishing
and research trips were observed. During 1972, a total of 13
cruises had accompanying cbservers. In 1973, the number rose to
24 fishing and the increase in the number of cruises each year
brought the realization that too much time was reguired for the
preparations and typing of morality tables. By 1974 the number
of observed trips had risen to the point where it was no longer
afficient to manually perform the cruise report calculations or
to type the mortality tables.

Az a result of this large increase in the number of observed
trips, the first computer compatible data collection forms were
provided to the observers fielded in 1974. At the end of each
cruise, the coded data was punched and computer programs were
used to produce the mortality tables. Ensuring the accuracy of
the obhserver data in 1974 was a major obstacle to effective
utilization of the databases. In the later part of 1974, a data
base management system was developed which included computer
verification of each data set. The data verification routines,
written in 1975 and used until 1978, underwent major revisions
each year to accommodate both changes in the collection/input
forms and the refinement of verification needs. These programs
were never fully documented and were found to be nearly
incomprehensible to other than the original preogrammer. The
original program listings are archived at the SWFC, and
instructions in how to read (interpret) the computer-coded logic
that performs the actual error checking is included in Appendix 1
of this documentation. Specific editing criteria are separately
archived, by vear, in a series of internal reports at the SWFSC.

The 1979 programs and subroutines were written in the FORTRAN-66
language on Computer Science Corporation's INFOHNET
Telecommunications network. They take significant advantage of
many system dependent features although the basic coding plan is
applicable to other computers and languages. The data
verification system was designed to provide a standardized,

genaral approach for the verification of fiwed-field, formatted
data. This approach is described and we provide, as an example,
an application we implemented on the CSC INFONET computer system,
including the program code for the sequencing and main
verification programs written by the Porpoise Data Management
Group.

During late 1979 and early 1980, the group of "COMMON
SUBROUTINES"™ utilized by the edit programs were modified to meet
FORTRAN=-T7 and ANSI standards, and to facilitate the
implementation of the edit programs on a wider range of computer
systems. In late 1981, further modifications were made in order
to implement the edit programs on the UCSD VAX computer system
(Appendix 2). None of these modifications has changed the basic
functions of the common subroutines, nor the hierarchical
relationship between the subroutines. The purpose of this
document is to describe the common subroutines developed and
implemented during and after 1979, including their function and
hierarchical relationship. Further revisions may occur in order
to enhance the execution of programs or to implement the package
on another computer system. An example of a relatively simple
edit program is included in Appendix 3 and includes the data
collection form, the specific editing criteria applied to the
data, and the edit program code. More complex applications and
the coded edit programs for these applications are archived at

the SWFSC.

II. DATA VERIFICATION ON PFIXED-FIELD FORMATE

Prior to 1974, researchars at the SWFC had performed analyses
using calculators and mainframe computers. Data were compiled
from field notebooks, and data forms, and transferred (coded)
onte FORTRAN coding sheets. The coded data were then keypunched
ento 80-column cards or "physical records", with each physical
record containing a unique identifier associated wiFh an event,
or "logical record". In many cases, all data associated with a
logical record could be coded onto a single physical record. In
cases where more than one physical record was reguired to
incorporate all the data associated with a logical _recurd, each
physical record contained the same unigue identifier, and the
physical records (cards or card images on computer disks) were
numbered sequentially (e.g., 01,02,...,10,11). Thus, one or maore
physical records (cards) represented a single logical record, and
logical records were grouped together into data files. Each data
file represents a unigue type of event or activity and is
associated with a unique coding format. Data files were sometimes
separated into subgroups by calendar year.

A wariety of data files were in use during the early 1570s and
additional 1logical records were appended to data files as new
data was received. A listing of the keypunched cards was printed
and the coded, keypunched values were reviewed. Errors in elther
the coding or keypunching of these data resulted in the card
containing the error being removed from the data file, and a new
card was keypunched. These data files were used as I1nput tTo
computer programs which produced summary results, analyses, etc.
Each time a computer program was eXecuted, the data file(s) were
included in the jobstream.

With increases in the amount of data being ocollected that
occurred beginning in 1973, and the development of coded data
forms sent directly to be keypunched, we began using a few of the
EMDF package of software programs to assist in the wverification
of the keypunched data. We primarily used the program which
produced the frequency of values for fields identified in a
format statement. We were thus able to guickly identify data
files which contained values that were suspect (e.g. Day > 31:
Time > 2400). These "range checks" were helpful, but somewhat
cumbersome to execute and review, and the physical records
containing the out-ocf-range values were not identified.

During 1974, we beagan developing computer programs using the
FORTRAN-66 language which would perform range checks similar to
what we had obtained from the BMDP software, and identify the
physical and logical records where these "errors"™ occurred. We
incorporated additional features into these computer edit
programs including the identification of fields which did not
contain any data (when we felt there should be data), and records
which failed previously defined criteria comparing the values of
one or more fields. These edit programs were implemented during
1974, and utilized on a number of data files collected during the

year. A specific edit was developed for each data file, although
each program performed similar functions: 1) sequence of physical
records associated with legical records, and sequence of logical
records within the data file, 2) blank checks, 3) range checks,
and 4) logical checks. The specification criteria for blank,
range, and logical checks was embedded in the programs in
nuUmerous arrays. We wrote new edit pregrams for each data file
during 1975 and 1976, because the data formats changed each year.
We realized that although separate edit programs were required
for each data file, because of specific physical and logical
record formats, and blank, range, and logical criteria, many of
the edit program functions were common to all edits. -

During late 1976, we began developing new edit programs for use
with data to be collected during 1977. We initiated efforts to
develop subroutines which could be used directly, or with only
minor alterations, by all programs to perform functions common to
all edits. A sequencing-function subroutine was developed for
each 1977 edit and implemented as a subroutine called by the main
program. The specification criteria for blank, range, and logical
checks were embedded within subroutines containing arrays of
these walues. These arrays were used by other subroutines which
performed the actual edit-checks ocn the data. We developed
additienal subroutines which created output files intended to
document the actual blank, range, and logical checks performed by
each main edit program. The documentation files for the blank and
range checks identified whether "blank"™ was an acceptable wvalue
for a wvariable, and the range of acceptable wvalues for a
variable. The documentation file for the logical checks
identified the criteria and wvariables associated with each
logical error check, although interpretation of the documentation
remained difficult. We wrote "How to read intra-variable logic"
in an attempt to elucidate the meaning of this documentation, but
our efforts were inadequate [(Appendix 1). We wrote edits using
this revised package of subroutines during 1977 and 1978.

We developed and wrote new subroutines to perform the edit
functions using contracted programmers beginning in mid-1978. The
new package of subroutines and edit programs were implemented in
1979, and for the most part, are still in use. We removed most of
the blank and range criteria from arrays, and incorporated these
checks as parameters in calls to newly created subroutines that
performed the function (e.g., blank check or range check). We
developed less obtuse coding of the logical checks in the edit
programs, and created a database of logical error statements
which provided an "English-like" definition of the actual error
check. Finally, we created subroutines to tally the freguency of
blank, range, and logical error checks that occurred each time
and edit was executed on data. This latter function provided some
insight into the data which we used to modify data definitions,
training classes, or just teo inform researchers of the

ocCurrences.

The remainder of this documentation on data vnrifi?atiun reflects
the programming perspective and design that was implemented in

1579=1980 and which is essentially in use today. The needs of an
error report will be discussed and then constraints on the
computer program created by the nature of the input data will be

described.

ERROR REPORT OUTPUT

The net outcome of a data verification program is the error
report. It is this report which communicates the error(s). There
are different ways and needs of communication and different kinds
of errors. An error report should relatethe following: 1) the
name of the verification program, 2) the name of the file being
verified, 3) the date and time the program was executed, and the
sequential page number of the report listing. All this can be
suitably formatted as a page header. This information will
prevent confusien as to when the verification was performed, what
files were used, and what version of the verification program was
executed. Additional items necessary to the report are the
location of the error (record number and columns affeced), the
type of error detected, and a display of the record(s) in which
the error(s) occurred. Listing the record(s) inveolved in the
error provide the data editor with a updated listing of the data
file thus preventing confusion which can result from use of an
old listing. The ability to relate the position of the error and
to list the error records is dictated by the type of error. There
are two main error classes: field errors and logical errors.

Field errors are those errors in which a specific fleld is tested
for its contents against some previously defined criteria. The
physical record number in error, the beginning and ending columns
of the field (for the physical record), and the type of field
error (e.g., blank or range error), are the basic reporting
requirements. The field may be reguired to:

1. ba blank or not be blank: {e.g., y&s or no)

2. ba within a range of values: (e.g., 25-43)

3. contain only certain characters: (e.g., A,X,2,/,9)

4. be a valid numeric value: (e.g., 23 or 1.234)

5. be one of several code values (e.g., 1,10,A,E)

6. other: (7)
Logical errors generally reguire more than one field to be
tested, although this is not always the case. A data field may
be tested against the file name, or some input parameter. Within
the logical error class, fields are summed or compared to other

fields. Logical errors may invelve only one input record or
several records. These records may be within the same record

group or other record greoups. Multiple input files may be
involved. Logical errors have more complex reporting requirements
in that fields in multiple records may be invelved. The error
message for a logical error may consist of a detailed error
message with direct references to various fields and their
contents, or a code for the error. In either case a record(s)
must be selected for display.

We found that it was most useful to display all error messages
relating to a particular data record, followed by a listing of
the record. All data records within a record group were
processed and if any one record in the record group had an error,
the entire record group was printed on the error report. A
record group is a set of records which have a common feature
which ties them together as a group. The record group may be a
functional unit described by the input data forms or be suggested
by the types of logical errors being tested. The error report now
consists of:

1. PAGE HEADER

2. Error statement(s) : blank, range, logical
3. Error Record number and listing

4. Error statement(s) : blank, range, logical
5. Error Record number and listing

... continues for all Records in a Record Group

6. Record Group listing

INPUT REQUIREMENTE TO EDIT FROGRAMS

There are several constraining factors defined by the nature of
the input data. Since the role of the data verification program
i to relate the data errors, errors within the data should not
cause the program to blow-up (abnormally terminate). Both
logical and field error types contribute to this problemn,
although in different ways.

A problem presented by input data is the input format required by
the READ and FORMAT statements of the FORTRAN compiler, and data
conversions required by the FORMAT statement. When a field needs
to be numerically converted upon input, it may be invalid. Thus,
jt is best to read in an input record unformatted, and then
walidate and translate each field separately. This allows
determination of the validity of the record length and wvariable
values by the program legic, and prevents the abnormal
termination of the program because of the FORTRAN compliler's
error handling function. We refer to this data file testing as
Fhase 1.

Because logical errors may require comparisons between record
groupings which may or may not be directly related to the data
file format, the content of the appropriate record groupings must
be determined before these logical error checks can be performed.
Some record group contain meltiple physical or even multiple
logical records, while others are either single physical or
logical records. There may be one record in the input file,
several single-card format records, several groups of multiple-
card records, or even several groups of single and multiple-card
records. Record groupings can be arbitrary in that the user, or
programmer, can decide what constitues a group. For example, a
record grouping could be defined as all records (physical, or
logical, or both) which oceccur on a single day. Logical error
checks could then be performed on these groupings. This differs
from "groups" of physical records which, by definition, make up a
legical record.

A program which attempts to assess data file integrity (sequence
of records) and perform logical errors checks is complicated and
difficult to update. Changes in data file formats are
relatively infregquent, and when they are reguired, it is
relatively simple to modify the edit program to accommodate the
new record groups. Thus, logical errors relating to the data file
integrity (sequence of records) are best dealt with before
entering the main logical edit functions of the edit program.
This is why we developed subroutines to check the segquence of
physical and logical records in a data file (referred to as Phase
2) prier to performing the other error-checking functions (blank,
range, and logical checks), which we refer to as Phase 3 testing.

IIT. THE DATA VERIFICATION BEYSBTEM FOR THE
PORPOIBE DATA MANAGEMENT BYSTEM

The data wverification system developed for the Porpoise Data
Management System evolved into three verification phases (FPhase
1, 2, and 3). An error in one phase prevents advance to the next
phase. The main edit program (Fhase 3) ecalls the sequencing
subroutine which then executes the Phase 1 tests, and if
successful, the Phase 2 tasting. If both Fhase 1 and Phase 2
testing are successful, the main edit program then performs the
Fhase 3 testing (blank, range, and logical error checks).

Fhase 1 identifies record length and variable format type errors,
or the absence of these errors, associated with how a FORTRAN
compiler handles READ, FORMAT, EOF, and various "type formats"
(INTEGER, REAL, CHARACTER). This phase locates the first record
number in the data file being edited which fails the test, and
informs the user of this location. Corrections to the data file
are required before the Phase 1 tests are redona. It is sometimes
necessary to repeatedly execute the edit program (Fhase 1),
correct identified Phase 1 errors, and re-run the edit program
again until all Phase 1 problems with the data file are

corrected.

FPhase 2 testing checks the sequential order of physical records
and logical records and, in some edits, ascertains that variables
such as DATE and TIME do not decrease between seguentially-
ordered physical and logical records. FPhases 1 and 2 were
implemented during 1979 in the subroutines that perform the
sequencing checks on a data file. Prior to 1979, separate
sequencing programs were developed and executed prior | te
execution of the main edit program for each data filae.

Phase 3 testing provides detailed, cross-field verifications
(blank, range, and logical error checks). Separating the
program legic, and subroutines, into these three phases provided
simpler program structures which were easier to revise and
update, communicated the errors to data editors in a step by step
manner, and provided c¢lear, concise documentation within the

Program code.

There were two main programs per data file to be edited prior to
the 1979 implementation: 1) The combination of Phase 1 and
Fhase 2 tests formed the sequencing program. Fhase 3 tests were
performed by the main edit program. With the 1979 implementation,
a single main edit program was developed for each data file with
the sequencing (Phases 1 and 2) tests performed by a subroutine
called by the main edit program. The main edit program (Fhase 3)
calls the sequencing subroutine which then executes the Fhase 1
tests, and if successful, the Phase 2 testing. If both Phase 1
and Fhase 2 testing are successful, the main edit program then
performs the FPhase 3 testing (blank, range, and logical error
checks). Thus, when the main edit is executed, it always performs
a check of the physical record sequence first.

The data verificatien system is comprised of a main program
(edit) which sequentially progresses through each of three
phases. If errors are detected during either Phase 1 or Fhase 2,
the program can terminate depending upon the users predefined
criteria for termination and output. Once the program progresses
to Phase 3, the edit processes all records in the data file
regardless of the number and type of errors detected. All three
phases utilize the common subroutines and functions. The
progression through the three phases and the termination criteria
we defined are shown in Figure 1. A diagram relating the calling
sequence, by phase, for all common subroutines is shown in Figure
2, and a brief description of each of the common subroutines is
presented in section IV. Some routines are called once and
others repeatedly as indicated. The common subroutines relate to
one another via parameter lists or variables defined in the named
common bleck called ERROR (section V). Figure 3 provides a cross
reference of the variables within the named common block ERROR
directly referenced by the wvarious subroutines. Section VI
provides additional deocumentation of the logical hierarchy of the
common subroutines ERRLOG.DP, ERRFIL, ERRCHE.DF, and WRAPUP.DP
which are called by either the main edit program or other common
subroutines. Section VII provides additional information on how
data is input into the edit program, subsequently passed batween
the various common subroutines, and included in the error report
listing. Section VIII describas the databases which were
developed teo archive and update logical error statements (ESBODB)
and counts (ECEODE) .

10

Figure 1. Data verification calling structure and hierarchy flowchart.

g

AN EDIT
PHASE 1.23 DWTA FILE

SECUENCING SUBROUTINE
PERFORELES PFHASE 1 CHECHS:
o, Inpul data Me evalabia?
b. Physical reonnds B0 oplumns long T
o Dss orul e varisblo maich
dutafla nama?
. Fasvritas daba Ra numisscing 1,1

PHASE 1 el ol '
m
REPOHT

SECUENCING SUBROUTINE
PERFORMS PHASE 2 CHECKS
I ORDER:
. BLAHE, CHARACTER AHD AAKNGE
chacks on varishies arsncuisd [l
with ssquencing e dalalla
b, Sagisanes ol PHYSICAL mooads,
LOGICAL reconds, and LOGIGAL groups

KR EDIT PEHFORRS:
PHASE 3 CHECES IM OROER:
a. Blank
b. Characies
. Aange
d. Logical
ON RECORD SEQUENCE ORDER
a. Physical moomcs
b, Logicad records
€. Logicel groups

CLOEE

oe YES ERRCH
\ REPORT

i1

THE ERROR REPORT FORMATS FOR PHASES 1, 2, AND 3

The error report formats differ between Phase 1, FPhase 2, and
FPhase 3 +testing. Phase 1 verifications invelve only errers in
relation to one record. The report format allows for the error
messages for the record, followed by the record. The format is
defined to fit on an 80 column terminal.

Phase 2 verifications involve the order and number of records.
The report format allows for the error messages for the record,
followed by a suitable range of records before, after, and
including the error record. The format is designed to fit on an

80 column terminal.

FPhase 3 verification types are mixed but usually relate to fields
within a given record group. All error messages for a record are
printed follewed by a listing of the recerd. When all records
within a record group are processed, the records within the
record group are printed sequentially with a column delineator.

In addition to the printed error report, a database, ECB0DE, is
updated with the number of errors detected during Phase 3
execution, by error type and data file type. Analysis of this
data base can help in identifying problems in data definitien and
collection, and allow guality control to be more dynamic. Records
in this database contained the frequency of errors, by error
code, encountered each time the main edit was executed on a data
file. Error codes include blank, range, and logical errors and
are differentiated by data file type (e.g., SL for Set Log). The
logical error statement is writtenm in the form of a conditienal
statement followed by a resultant clausa. The logical error
statements are written out on the Error Message Collection Forms
which are then keypunched and loaded to the yearly database
(e.g., ESBODB) using FORTRAN program UPEROR.MN.

There are twe general classes or types of errors: LOGICAL and
FIELD. Both classes are tallied in database ECB80DB. Logical error
definitions are contained in database ESBODBE. Both data bases
have the same KEY format, consisting of the following.

DATASETID: Columns 1-8 identifies the field collection or
coding format by year.

CSEDITa0
SLEDITEO
VAEDITEO
MMEDITED
BLEDITEO
LHEDIT8O
ASEDITEO

GRPCOD: Column 9 identifies multi-format field collection
or coding formats.

12

'N" - Hon-porpoise Set Log SLEDIT
Ipt - Porpoice Set Log SLEDIT
'E! - Effort MMEDIT
g - Sightings MMEDIT
v - all others VAEDIT, BLEDIT, CSEDIT

ERRORTYPE: Column 10 identifies the nature of the field error
or logical error.

B - Blank error (Field)
c - Character error (Field)
L - Logical error {(Logical)
R = Range error (Field)
CARDSEQ: Columns 11-12 for FIELD errors, the card seguence

of a field (e.g., "01"}) within a multicard format
data set. For a single card format the code is "01"
(Length 2). Blank for LOGICAL errors.

BEGINCOL: Columns 13-14 for FIELD errors, the beginning
column number of (e.g., %"29") the field having an
error. (Length 2): Blank for LOGICAL errors.

ENDINGCOL: Columns 15-16 for FIELD errors, the ending column
of a field (e.g., "34") having an erreor. (Length
2). Blank for LOGICAL errors.

ERROR NUMBER: Columns 17-24 identifies the particular error for a
given data file. Blank for FIELD errors. Always
ERRORM " where " " is some number between 1-

S99,

The EEY value is built by the Phase 3 coding. Either, or both, of
the databases can be accessed via the same key. There are "DUMP"
programs ({DERCT. 80 and DERST.80) for ECSODE and ES80DB
respectively. Access to these data bases (section VIII) occurs
through subroutine ERRLOG.DP called by subroutines BLANEKT.DP,
RANGIT.DP, VALUIT.DP, and VERFIT.DP when an error is detected

(sections IV and VI).

13

the logi
ogical vari
laklea
ANYERR iz set to TRU
E and th
en checked:

15

Phase 1 Procassing

The Main edit program calls the FPhase 1 coding, passing the
character string, HEAD, which is then used as the header for the
top of each output page of the error report. Prior to 1980 there
were two different Phase 1 entries within subroutine CSEQP1:
CSEQP1l and CSEQP2. During the 1980 modifications to the common
subroutines, we incorporated these two entries, along with other
Fhase 1 and 2 functions into a single subroutine (the "seguencing
subroutine") specific to each edit program on the C5C system.
These "sequencing subroutines® perform the functions desribed
below that were previously performed by entries CSEQPLl or CSEQP2
in the subroutine CSEQ.P1. In late 1980, further modifications to
this area of the common subroutine package was reguired in order
to implement the package on another computer. The common
subroutine CSEQ.P1 (entries CSEQP1l and CSEQP2) which is CS8C
specific, was incorporated into a "sequencing subroutine". The
"sequencing subroutines" are referenced, for example, as CSEQ81
(for Cruise Specifications sequencing subroutine for 1%81).

Entry CSEQPl was called for the following data sets: Cruise
Specifications, Fishing Mode, Shipboard Mammal Watch Daily
Effort, Shipboard Mammal Watch Sighting, and Porpoise and
School Fish Set Logs during 1975-1979. CSEQ.P1 was utilized
during 1980 on the C5C system.

The input data file is rewritten to renumber the file by 1.

The cruise number is crossed checked between the file
name and the input file.

The input records are verified to be of length £0.

Entry CSEQPZ was called for the Marine Mammal Bridge Log data
files for 1975-1979. CSEQ.Pl was utilized during 1%80 on the
C5C system.

The input data file is rewritten to renumber the file by 1.
The input records are verified to be of length 80.

Fhase 1 prompts for an input data file name. The input file name

is concatenated with HEAD and passed by EJECT.DP, the paging '
routine. EJECT.DP performs a top of form stating the card
seguence program name, the input file name, the date, time, and

page number.

Subroutine ONDSE2.DP is called to verify the occcurrence of the
input file on the users disk. STRIP2.DP is called by ONDSE2.DP to
prepare the input file name for use in a system routine which
does the verification of the file on disk. If the file is not on
disk, execution terminates. If the file is on disk, the
appropriate verifications and renumbering are performed.

The Phase 1 program rewrites the file so that the key begins with

1 and increments by 1. The input file is rewound. Each record is
input and a verification is performed. If an error is detected

14

Figure 2. Common subroutine calling

sequence and hierarchy flowchart.

Walues In pornethealy
A - GALLIEC REPEATEDLY

¥ - CALLEDNONCE

[
I TR L
FIELD VERFICATION
(o DeSaice D SUBROLTINES: EJECTIDF
BLANKT.DF
WEAFIT.OP
HASE 1 mmrm.ﬁ!
STRIP2DP
T
EJECT.DP ERANL
PRASE 1 Y&
ERADAS
7
L
4] * [1aH]
| escroe _l | Parouroe |
PHASE 2
M}
EJECTOP
PHASE 2 WES
ERADAS
T
L
'*ﬂi *lm *lﬁ +lm +wu
PHASE 3 FIELD VERUIFICATION
BUBRDUTINES: ERALOG.OP PP ERRCHH_ [P WRAPUP.DF
BLAMKT [
VERFIT.OF
WALLITOP L =
AANGIT DR
EJECT.OR EECTDR EJECT.OF
EJECTID® I ERAFIL

16

If ANYERR is TRUE:
subroutine EJECT.DP is called for paging.

the error message is written because the logical
variable ANYERR is checked and found to bea TRUE.

ANYERE is reset to FALSE, and TOTERR is set to TRUE.

If more than 25 errors are encountered, the program will
terminate immediately. If all records are processed and 25 or
less errors were detected, TOTERR is checked. If TRUE, an error
was detected during Phase 1 testing and a stop is performed
rather than continuing on to Phase 2 testing. If no errors were
detected; the program procedes to Phase 2.

Phase Z Processing

If +there are no Phase 1 errors, Phase 2 verifications are
performed. Fhase 2 coding verifys the order and number of records
in the data file. Phase 2 coding is written for each data file
type. Phase 2 coding can exist as both main programs and
subroutines. The only difference between the main programs and
subroutines is that the latter have the SUEROUTINE statement and
a RETURN statement; main programs have a STOP statement and no
SUBROUTINE STATEMENT.

All Phase 2 coding has the following basic structure. A record is
input and a verification is performed. If an error is detected,
subroutine EJECT.DP is called with the number of output lines for
the error message, the error message is written, and logical
variable ANYERR set to TRUE. Following all verifications for the
record, logical wvariable ANYERR is checked. If ANYERR is TRUE,
subroutine PGROUP.DP 1= called to print a set of records before,
after, and including the record in error. Then ANYERR is set to
FALSE and logical variable TOTERR set to TRUE. When all records
are read, the Phase 2 coding finishes with either a STOF or
RETURN, depending upon whether it is a main program or
subroutine.

FPhase 2 coding may make calls to the field verification routines.
These routines check for blanks (BLANET.DP), range (RANGIT.DF),
character type (VERFIT.DP), and retrieve a numeric from a string
(VALUIT.DP). The fields verified would be those fields which are
used to check the seguence of the records. A general description
of these routines is given in section IV.

Fhase 3 Processing

When a RETURN is made to the main verification program, common

17

logical wvariable TOTERR is examined. If TRUE, an error was
encountered in Phase 2 and Phase 3 writes a message and then
terminates the program. If TOTERR is FALSE (meaning no Fhase 1 or
2 errors), then Phase 3 prompts for "NO EDIT" or "GO EDIT". The
user response indicates whether or not the program should
terminate, or continue with a main edit. By incorperating this
prompt into the FPhase 3 coding, we have eliminated the need for
stand alone Phase 1 and 2 coding (previously the "seguencing"
programs. All sequencing requirements (Fhase 1 and 2 coding) are
incorporated into Phase 3 coding. When Phase 3 begins, the ECBODBE
data base is opened with a call to OPLGCT (see ERRLOG.DP in
sections IV and VI). The actual database name (i.e. ECBODB) is
passed through the call as variable ECNAME. This allows us to
only change the MAIN programs once a year, and leave the COMMON
SUBRCUTINES intact.

Variables ELEVAL and DATSET are assigned to enable errors to be
tallied on ECS80DB (secticn VIII). The disk seguence number
(variable DSKSEQ) is set to zero. A prompt is made to set the
named common block ERROR variable ALLBLE to TRUE or FALSE. If
ALLBLE is TRUE, all of the input data file, regardless of error
conditions, will be printed. If ALLBLE is FALSE, only those
record groups which have an error will be printed. Now we are
ready to proceed.

As 1in Phase 2, there are field verifications and logical
verifications. The field wverifications are handled using the
field verification subroutines. The subroutines used are:
BLANKT.DP, RANGIT.DPF, WVALUIT.DP, and VERFIT.DPF. All the field
verifications for a given record type are performed prior to
proceeding to the legical verifications. Generally, if a field
reguires a blank check or character check, and range check the
blank or character check is done first, and if the blank or
character check results in an error, no range check is performed
(example 1). If a field does not require a blank or character
check (e.g., 1it's okay if it is blank), the blank or character
checking subreoutine is called, and only if no "error condition"
rasults will a range check be performed (example 2).

Example 1
c
CALL BLANEKT(14,4) Blank check cols. 14-17
IF(HOGO) GOTO 38 if not blank do Range check
C if blank do Character check
C
CALL VERFIT(14,4,DIGITS) Character check
38 CONTINUE
CALL RAMGIT(14,4,850,1100) Range B850-1100 on cols. 14-17
c
Example 2
C
CALL RANGIT(14,4,850,1100) Range 850-1100 on cols. 14-=17
C

18

The logical wverifications comprise the bulk of the FPhase 3
coding. Each logical wverification is assigned a unigue 8
character error code. When the logical verification is performed,
the logical error is reported using this 8 digit code by calling
subroutine ERRLOG.DP. ERRIOG.DF prints an error message
containing the sequence number of the input record and the error
code and tallies database ECB0ODE with the ocourrence of the
error. Logical error checks are performed after blank, character,
and range checks have been performed. It 1is generally more
difficult to locate specific problems with data resulting from a
logical error occurrence, because there are multiple fields
involved. Therefore, we found it was easier to locate "errors" by
sequentially checking for blank, character, range, and then
logical errors. Logical errors are coded as a group within an
edit program such that they can be modified, added, or removed
easily. They can be simple or complex (examples 3-4).

Example 3
c
IF (P(STRING(1){10:11)) .LE. '60') GO TO 100 cols 10-11
IF (P(STRING(1l)(12:15)) .LT. '0400') GO TO 100 cols 12-15
IF (P(STRING(1)(16:16)) .EQ. '3') GO TO 100 col 16
CALL ERRLOG('ERROROOL1') error 001
100 CONTINUE
c
Example 4
c
IF (P(STRING(1)(10:11)) .LE. '60") .AND. cols 10-11
IF (P(STRING(1)(12:15)) .LT. '0400'}) .AND. cols 12-15
IF (P(STRING(1)(16:17)) .EQ. "03"') .OR. cols 16-17
IF (P(STRING(1l)(16:17)) .EQ. "99"') .OR. cols 16-17
IF (P(STRING(1)(72:72)) .NE. "X') GO TO 100 col 72
CALL ERRLOG('ERROR112') error 112
100 CONTINUE
c

All wverifications are performed for a record. Then subroutine
ERRCHE.DP is called to check if any errors have occurred (ANYERR
is TRUE or FALSE) for the record. If ANYERR=TRUE, the record is
printed. Following all wverifications for a record group,
subroutine WRAPUP.DP is called to check if any records within the
group had an occurrence of error (TOTERR or ALLELK are TRUE or
FALSE). 1If TOTERR=TRUE, or logical wvariable ALLBLE is TRUE, the
antire data group is printed as a bleck. See sections IV and VI
for a more detailed explanation of how to use ERRLOG.DP,
ERRCHK.DP, WRAPUP.DP, and the field verification. Each logical
verification occupies a separate block of ceode which is entered
from the top and exited from the bottom. If a block is removed,
it will not affect the rest of the program. This form of coding
is called block structuring. A block is never entered from other
than the top, and is never left other than through the end of the
block. A labeled CONTINUE statement is coded at the bottom of
some blocks to allow for a jump out of the block.

19

IV. Brief descriptien of 1980 common subroutines and databases.

This section lists the 1%80 subroutines and databases that
comprise the data verifiecation package. A brief description of
the COMMON SUBROUTINES and databases is provided. Appendix 2
provides additional information useful to programmers considering
implementation of the package of common subroutines on another

computer system.
Subroutine Purpose

ELANET.DP Field werification routine used for blankness.
The field specified by passed parameters (beginning
column number and field width within STRING) is
tested to be non-blank. If the field is blank, an
error message is written and optionally, ECB0DE data
base is tallied with the error cccurrence.

_SEQ80 The "sequencing subroutine" for a particular year and
edit where " " is replaced by the edit type (e.g., C
for Cruise Specifications). Prior to 1979, the

figagquencing subroutine™ was a separate program
axecuted independent of the main edit program. These
separate programs used entries CSEQP1 and CSEQP2
within a common subroutine named CSEQPl. In 1980, we
incerporated these functions with the "segquencing
subroutines™ through calls to CSEQ.FPl1 on the CSC

system.

CSEQ.P1 Fhage 1 wverificatien subroutine called by the
"sequencing subroutine" for an edit. Prier to 1979
CSEQP1 and CSEQP2 were entries within the common
subroutine CSEQPl. In 1980, we modified the
subroutine and eliminated the need for both entries.
CSEQ.Pl is CSC specific (see Appendix 2). The input
filese name is prompted for and then all physcial
records in the data file are renumbered beginging
with 1 and incremented by 1. The first 3 characters
of each record are cross checked against the first 3
characters of the input file name (generally the HMFS
Cruise number assigned to the observer trip data
file(s) undergoing edit. The record length is
verified to be 80 characters.

CSEQP2 Fhase 1 wverification entry accessed through the
"sequencing subroutine" for an edit. Prieor to 1979
CSEQP1 and CSEQP2 were entries within the common
subroutine CSEQP1. In 1980, wea modified the
subroutine CSEQP1l and eliminated the nead for both
entries. CSEQ.P1 is CS8C specific (see Appendix 2).
This subroutine performs the same functicns as entry
CSEQP1l, except that records are not cross checked
against the input file name.

20

DERCT.80

DERST. B0

DOERCT. 80

DOERST.80

ECBODB

EJECT.DP

ERRCHE.DP

ERRFIL

ERRIOG.DP

ESBODB

ALADIN program used to provide a report listing from
the database ECB0DBE containing the frequency of
errors by error code and data file type.

ALADIN program used to provide a report listing from
the database ESE80DB containing the logical error
statements, by error code and data file type. This
program produces a disk file which can be printed and
transformed into the annual LOGICAL ERROR STATEMENT
book.

ALADIN program which declares the error count
database ECBODB.

ALADIN program which declares the error statement
database ES80DB.

ALADIN database used. to store a tally of error
ocourrences by error code for a data file type.

Paging routine called whenever printed output is
desired. When initialized, a page is ejected with a
header consisting of a user specified 60 character
message, the date, the time, and the page number of
the report, followed by 2 blank lines. Subseguent
calls to EJECT.DP are for the purpose of passing the
numbar of output lines to be written. When
insufficient space is available on the current page,
a top of form is performed and the line number on the
page is reset. Various entry points are available.

Subroutine called after all verifications for a
specific record have been performed. If the record
had errors, (ANYERR is TRUE), ERRCHK.DP prints the
record contained in STRING, ANYERR is set to FALSE
and TOTERR is set to TRUE. If no error existed for
the record (ANYERR is FALSE), the subroutine returns
to the calling program.

An entry point to ERRLOG.DP. It is called by the
field wverification routines BLANET.DF, RANGIT.DF,
VALUIT.DP, and VERFIT.DP to tally the fregquency of
range, character, and blank errors in the database
ECB0DE, and to set variables NOGDO and ANYERR to TRUE.

Subroutine called to handle logical errors. It can
write 3 forms of error messages (long, short, and 7),
tallies the frequencies of leogical errors encountered
in the database ECBODB, and sets variables ANYERR and
HOGO to TEUE.

ALADIN database used to store logical error
statements by logical error code for a data file

tvpe.

21

GENER1.DP

GENERZ . DP

GENER3.DP

ONDSE2.DP

PGROUP.DP

POST

RANGIT.DP

STRIPZ.DP

UPERST.80

Subroutine teo provide integer functions that are
equivalent to the INFONET computer system (Computer
Sciences Corporation) functions FIVALS, FVRFYS, and
FBRECS. Used for implementations of edit programs
using FORTRAN where these CSC system functions are
unavailable.

Subroutine to provide a character function that
closely simulates the INFONET computer system
(Computer Sciences Corporation) function FSTRS. Used
for implementations of edit programs using FORTRAN
where the CSC system function is unavailable.

Subroutine to provide a single interface to the
INFONET computer system {Computer Sciences
Corporation) functions FDEFN$, DOY, TOD, and UDAT2%.
Used for implementations of edit programs using
FORTRAN where these CSC system functions are
unavailable.

A logiecal function which tests to see if the passed
file name is on the computer disk. The function is
set to TRUE if the file is on disk and to FALSE if
not.

A function used to left pad =zeroes on a passed
numeric string field. For valid numeric fields, the
function is assigned the field with zerces appended
as needed. For non-numeric or blank fields, the
function is assigned the field unchanged.

A subroutine used to print a record containing an
error(s) and associated records located before and
after the record containing an error(s) by accessing
a disk file.

Subroutine used to calculate a geographic pesition
(latitude and longitude) for a time, using a starting
position and time, speed, and bearing (course).

Field verification routine for integer range (can be
modified to handle real values). The field specified
by the passed parameters beginning column and width
within S5TRING, is verified to be numeric and then
numerically tested to be within or equal to the
passed parameter range values. If the field is out of
range, an error message is written and optionally,
the database ECBODE is tallied with the error
occurrence.

A subroutine to prepare a file name for use by the
subroutine called by ONDSKZ.DF to test the file to be
on a computer disk.

ALADIN program used to add, delete, and change

22

VALUIT.DP

VERFIT.DF

WRAPUP.DP

¥YESHNO

records on the database ESBODB.

Field verification routine. The field specified by
the passed parameters, beginning column and field
width within STRING, is tested to be a valid integer
value (can be modified to handle real wvalues). The
character field is translated and assigned to integer
variable VALUE. If the field is invalid, an error
message 1s written and opticnally, the database
ECc80DBE is tallied with the error occcurrence.

A field verification routine. The field specified by
passed parameters, beginning column and field width
within STRING, is +wvalidated against a truth-set
character string passed as a parameter. If the field
is invalid, an error message is written and
optionally, the database ECS80DE is tallied with the
S8CTr0r OCCUrrence.

A subroutine used to print out a record group, passed
as a parameter, when the value of TOTERR is TRUE;

TOTERR is then set to FALSE.

Subroutine to prompt for a YES or NO response to a
guestion.

23

V. Named common blook ERROR

The named common block ERROR is the central means of
communication between the various subroutines used in the data
verification system. The common block statement and wvariable
declaration appears in all of the COMMON SUBROUTINES listed in
sections IV. Any program or subroutine which directly references
any of these variables must contain the common block statement
and must declare the variables properly. The common block,
variable declarations, and a description of the wvariables
follows.

Named common block ERROR is used by all common subroutines. A
cross reference of the variables and the routines is shown in
Figure 3. Even though each variable is not directly used, each
variable must have type specification to avold serious storage
problems. Below iz an example of the FORTRAN coding for the
common area, the type specification, and variable description.

C

c COMMON /ERROR/ANYERE, CARSEQ, DATSET, DSESEQ, ELEVAL, GREFPCOD,
1NOGO, STRING, TEMP, VALUE, TOTERR, ALLBLK, INFILE

© CHARACTER GRPCOD*1, STRING#*80, TEMP#80, DATSET#8, INFILE*20

¢ INTEGER CARSEQ, DSKSEQ, ELEVAL, VALUE

© LOGICAL ANYERR, NOGO, TOTERR, ALLBLK

¢

There are several categories of wvariables. Variables STRING,
TEMP, and VALUE make data available to the calling routine and
the field verification subroutines.

Variables NOG0O, ANYERR, and TOTERR inform the users routines and
system subroutines (ERRCHE and WRAPUP) as to the occurrence of an
error within a field, a record, or a group of records,
respectively.

Variables DATSET, GRPCOD, CARSEQ, and DSESEQ serve as field
identifiers: DATSET, denoting the type of data; GRPCOD a further
distinction in situations invelving multiple-multicard format
being wverified simultanecusly; CARSEQ distinguishing records
within multi-record formats; and DSKESEQ relating the absolute
record number within the input file (base 1, increment 1).

Variables ELEVAL and ALLELE control the BYYor raport
characteristies. ELEVAL contrels the complexity of the error
message and ALLBLE controls whether all data groups are to be
printed regardless of number or types of errors detected.

24

Figure 3. Variable croess reference for nemed commen Block ERROR and the common subroutines.

HiE jndicates varimble is assigned a value within the phase or subroutine.
=pe jpdicates variable is referenced within the ﬂldlﬂ ar ubrout §ne.

Referencing COMMOM SUBROUTIRES

BLAKKT.DF ERRELOG.DP
VARIABLE Phase 1 Phase 2 Fhese 3 VERFIT.DP RANGIT.DP WVALUIT.DF ERRFIL.DP ERRCHE.DP WREAFUP.DP

MAHE

ALLELK A R
ARTERE AR AR A R R AR

CARSEQ] A A R R 4

DATSET ' A R

DSKSED AR AR AR R 8 R 8

ECHAME A R

ELEVAL A R

ESHAME A R

[HFILE A E

GRALOD L B R B

L Risiied B R E & A R & &

STRING A& R & R A K E B 4 R

TEMF E 4 R

'I'I:IT.E RR A R . A E A R & A R
VALUE B E R E R

25

ALTBLE:

ANYERR:

CARSEQ:

DATSET:

DSKESEQ:

This legical variable is set to TRUE when it is desired
that subroutine WRAPUP.DP prints all record groups
regardless of error condition. A value of FALSE causes
WRAPUP.DP to print only those record groups meaning
TOTERR is true when record groups (i.e., TOTERR is TRUE
when WRAPUP.DP is called).

Logical wvariable set to TRUE teo indicate that a record
contains an error and left FALSE when a record does not
have an error. Subroutines ERRCHE.DF, ERRFIL, and
ERRLOG.DP, and the Phase 1 and Phase 2 coding make
direct references to this variable. ERRCHE.DP prints the
recerd gtored in STRING if ANYERR is TRUE and then sets
it to FALSE. Entry ERRFIL and ERRLOG.DP, which are
called for field and logical error conditions
respectively, explieitly set ANYERR to TRUE. Fhase 1
and Phase 2 coding sets ANYERR to TRUE for an error
condition. When all wverifications for a record are
complete, ANYERR is checked. If TRUE, the record in
error is printed.

The card sequence number within a data =et. This
variable is assigned the character(s) from a record
which contains a segquence number within a multicard
format. CARSEQ need not be numeric. For non-multicard
formats it should be assigned blank(s). CARSEQ is used
by the field verification routines to help specify the
location of a fileld containing the error. The error
message written by these routines and the record created
on database ECS0DE via the call to ERRFIL (an entry
point to ERRLOG.DP) contain CARSEQ. This variable must
be assigned by the user when the field verification
routines are called.

An 8 character string used to identify the data being
verified. This wvariable is concatenated with the field
and logical error specification code to create a key for
ECEB0DB or ESBODBE to indicate what data set type and file
contained the error. DATSET contains the data set type
identifier ecode (a string of characters) that indicate
the type of data file that is being processed (e.g.,
SLEDITB0 for 1980 Set Log data). DATSET is used by
ERRFIL (entry point to ERRIOG.DP) and ERRLOG.DP. DATSET
need only be assigned if ECBODB is opened in preparation
to store records. Columns 1-8 of DATSET are concatenated
with the logical error code by ERRLOG.DP to create a key
used to retrieve records from ESE0DE database. ES80DB
database contains both long and short error messages.

The absoclute record sequence number which begins with
zero and is incremented by one each time a record is

‘read from the input data file. This value is used to

indicate which record contains the error. It appears in
the error messages written by the field wverification
routines and ERRLOG.DP. It is used to indicate the

26

ELEVAL:

record number by ERRCHK.DP and WRAPUP,DP. It is used
for the same purposes in Phase 1 and Fhase 2 coding. The
value of DSKSEQ must equal the record number of the
record currently being verified when calls are made to
the field wverification routines, ERRLOG.DP, or
ERRCHK.DP. It must equal the record number of the last
record in a record group when WRAPUP.DP is called.

The variable codes for the type of logical error message
written by ERRLOG.DP, controls whether ECBODB database
should be updated by ERRLOG.DP, and controls whether
error messages are written by VALUIT.DP.

ELEVAL MESSAGE? UFDATED? MESSAGE?
-1 Code (1) Yes (4) Ho

0 Ho Hao Yas

1 Code (1) Yes [(4) Yes

2 Short (2)(5) Yes (4) Yes

3 Long (3)(5) Yes (4) Yes

Notations for the numbers in parentheses are:

(1) CODE - is an error message consisting of the
record number (DSKSEQ) and a message
stating that logical error number
"ERRORCODE"™ has failed.

(2) SHORT- is a 4 character error message, retriaved
from ESB0DE data base element "SHORT
MESSAGE"™ printed in addition to the CODE
arror area message.

(3) LONG- is a multiple of 4 character error message
' records retrieved from the ES80DB database
element "“LONG MESSAGE" printed in addition
to the code error message. A maximum of 59
error message records is allowed for each

multiple record set.

(4) If the database ECEBODBE is to be updated,
OPLGCT (entry to ERRLOG.DP) must be called
prier to calling the data wverification
subroutines, or ERRLOG.DP and CLLGCT (entry
to ERRLOG.DP) should be called at the close

of the program. These routines open and
close data bases ECBODB or ESB0ODE,
respectively.

27

GRBPCOD:

INFILE:

NOGO:

STRING:

TOTEER:

VALUE:

(5) To retrieve the short and long error
messages, ESS0DBE database must be on disk
pack and subroutine OPLGST (entry to
ERRLOG.DP) called prior to the first call
to ERRLOG.DP.

A character string, concatenated as part of the field
verification error code, used to identify the data set
of a record having a field error. When more than one
data set or card format is being simultaneocusly verified
some distinction must be made to aveid ambiguity. GRPCOD
becomes part of the key used when storing a field error
on ECBODE database. The field wverification routines
create this key and then ¢all ERRFIL (entry to
ERRLOG.DP) to wupdate ECS0DB. The user should assign
GRPCOD as blank if not otherwise needed. If needed, it
should be assigned any code desired, prior to calling
the field verifieation routines for a given record type.

A 20 character string containing the input data file
name. It is assigned by the Phase 1 coding.

A logical variable set to TRUE to indicate that a field,
being wverified by a field verification routine, is
invalid. When a field verification routine is called,
HOGD is set to FALSE. If the field is invalid, NOGO is
set to true when ERRFIL (entry to ERRLOG.DF) is called
by the field verification routines. In this way, the
calling program has an indication of whether the field
is invalid, and can branch if necessary.

An 80 character string into which input records are
stored. The field verificatien routines verify STRING.
When ERRCHEK.DP is called, the record printed out is
stored in string.

An 80 character string to which is stored the field
being verified. The field verification routines extract
the field being verified from STRING and assign it to
TEMP. HOTE! Bince the length functien 4is not
associated with TEMP the length of the field placed
there is not known.

In Phase 3 coding this logical variable is set te TRUE
te indicate that a record group contains a record which
had an error occurrence. It is also set to TRUE by
Fhase 1 and Phase 2 coding when any errer occurs, as an
indication to not go to the next phase. Within Phase 3
coding, TOTERR is set to TRUE by ERRCHE.DF when Any
error is TRUE. TOTERR is set to FALSE when WRAPUP.DP is
called. Phase 1 and Phase 2 coding require explicit
assignments for TOTERR.

When subroutine VALUIT.DP is called explicitly by the
calling program, or implicitly by calling RANGIT.DP, the

28

integer translation of the field being wverified is
assigned to VALUE. If the field is inwvalid or blank,
VALUE is assigned the value of zero.

29

VI. The logical hierarchy for +the field verification
common subroutines ERRLOG.DF, ERRFIL, ERRCHE.DP, WRAPUF.DP
and calling programs.

A hierarchical structure relates the field wverification
subroutines ERRLOG.DP, ERRFIL (an entry point within ERRLOG.DF),
ERRCHE.DP, WRAPUP.DP, and any calling programs. This structure
performs the function of informing the different routines about
the occcurrence of errors at the field level, physical record
level, and logical record group level. Logical variables HOGO,
ANYERR, and TOTERR (variables within labeled common block ERRCR),
are set to TRUE or FALSE by these subroutines to control the
printing of error records, and to inform the calling subroutines.
The structure is designed to reduce the amount of coding during

development of edit programs.

The field verification subroutines are used to perform checks on
field (variables) as part of the editing process. As each
subroutine is called, the logiecal wvariable NOGO is set to FALSE.
If a field error is detected by any of the field subroutines,
ERRFIL is ecalled and ERRFIL sets logical wvariables NOGO and
ANYERR to TRUE. By setting NOGO to TRUE, the calling program is
informed that a field had an error. When a logical error is
detected, ERRLOG.DP is called to report the error, and ERRLOG.DP
sets logical variable ANYERR to TRUE. Following all verifications
for a given record, subroutine ERRCHK,DP is called. This
subroutine checks logical variable ANYERR. If ANYERR is TRUE,
then the character variable STRING contalning the dinput record
being edited is printed. Logical variable TOTERR is set to TRUE
and logical variable ANYERR to FALSE.

The calling program or edit program is then ready for the next
physical record to be edited. When all verifications of a record
group have been completed, subroutine WRAPUP.DP is called.
WRAPUP.DP prints out the entire record group as a block of
records if either of the logical variables ANYERR or ALLBLE (see
sections VI and VII) were reset to TRUE. The logical wvariable
TOTERR 1is then set to false, and the cycle is completed. The
main edit program must initialize NOGO, ANYERR, and TOTERR at the
beginning of execution, and prior to the next cycle of records to
be edited.

30

IX. Data flow and field reference seguUence.

There are fundamental error report format regquirements and input
data error ramifications which help to mold a program structure.
It 4is the purpose of this section to provide a detailed
daescription of how data is input, data is referenced, and how the
report is written. We refer to these three aspects as the program
data structure.

Each phase reads from a disk file equated to FORTRAN logical unit
10. Each record is read into STRING, a wariable of type
character, length 80. The field verification routines do their
verifications of a field, described by beginning passed parameter
golumn number and field width within variable STRING. Logical
verifications make direct references to fields within STRING.
The ANSI standard syntax for a field reference is of 'the

following form.

STRING (BEG:END) where BEG is the beginning column number and
END is the ending column number.

e.q., IF (STRING(4:6) .GT. STRING(13:15)) GO TO 100

Reference of this nature is self-documenting. The field which is
referenced is known simply by looking at the input data format
layout. References of this format are useful for comparisons in
which no arithmetic is required. If a field needs to be added,
subtracted, multiplied, divided, or some other computation
performed, the data field has to be translated to its numeric
equivalent. This utility is provided by the field werification
routines ~RANGIT.DP and VALUIT.DP. Both these routines assign
coemmen bleck wvariakle value with the integer, numeric eguivalent
of the field, providing the field is valid numeric. Following a
validation, a user designated variable may be assigned a wvalue
via the arithmetic assignment statement.

MYWVAR = VALUE
MYVAR is available for computations as necessary.

CALL RANGIT (5,3,0,500)
MYVAR = VALUE

or

CALL RANGIT (8,2,0,200)
IPOST = VALUE

It is in the subseguent validations where the three phases
differ. 1In phase 1, a record with errors is printed cut by phase
1 coding using a write statement. In phase 2, STRING is passed to
subroutine PGROUP.DP where it is printed out. In phase 3,
subroutine ERRCHK.DP is called to print the record with errors
{the record being stored in STRING). In addition, the record

31

stored in STRING is assigned to a dimensioned character string of
length 80. This type of variable has the capacity to store many
record images. When all of the record group has been processed,
the record stored in the dimensioned character string, is passed
along with a count of the records to subroutine WRAFUP.DP which
then selectively prints the record group. Figures 4, 5, and &
show the data flow for phases 1, 2, and 3, respectively.

The perspective presented thus far is as if all logiecal
verifications are performed on a single, B0-column long, physical
record stored in the variable STRING. This is not always the
case for phases 2 and 3. Logical verifications can be performed
between the current record stored in STRING and previous records.
The previous records were saved in a numeric or character
variable. When possible, the references were made to a field
within a record, using the beginning and ending columns.
References can be made of the form:

STORE (3) (5:8)

The field referred to is the fifth through eighth column of the
third record stored in the record group storage area called
STORE.

IF (STRING (7:9) .GT. STORE(2) (6:8}) GO TO 20

All of the logical operators. LT, LE, EQ, HNE, GT, and GE are
permitted for comparing character strings. But, since not all
fields are zerc filled, comparing a field which is blank filled
with one which is zero filled will produce an erronecus result.
The common subroutine function P.DP was used to temporarily pad a
field with leading zeroes prior to performing a field edit
verificaticn.

IF (P(STRING (28:29)) .EQ. '02') GO TO 20

32

Figure 4. Phase 1 flowchart.

MAIN EDIT
Program

l

Sequencing
Subroutine
PHASE 1

X

Attempt to
read 80-column
STRING

INPUT
DATA FILE

Error

in
STRING
?

NO

Write STRING
and locate »(STOP)
in ERROR

a3

Figure 5. Phase 2 flowchart.

MAINEDIT | =
Program DATA FILE

Seguencing
Subroutine
PHASE 2

l<

Attempt to
read LOGICAL
RECORD

NO

CALL
PGROUP.DP
subroutine

|

Write STRING
and locate
in ERROR

STOP)

34

Figure &. Phase 3 flowchart.

MAIN EDIT -
Program ENPUT
PHASE 3 DATA FILE

Fead a
PHYSICAL
RECORD
Call
WRAPUP.DE
subrouiing
Swore PHYSIGAL
RECORD in
STRING
Parform ohecks an
variablas in this PHYSICAL
REGORD from STRING
CALL
ERBCHK.DP
subrouting
|daniify and
YES lecale PHYSICAL
ERRCOHAS
RECORD in
? ERROR
Mk

35

VIII. Error Counts (ECE0DE) and Error
Btatements (ESE0DB) databases.

Two ALADIN @databases were created to contain a tally of the
number of error occurrences (ECB80DB) or a record of the logical
error statements (ES80DB). The error count database (ECEBODBE)
records the number of error occurrences (field and logical)
detected each time the edit program is executed. Tallies are
maintained by data file type (e.g., Set Log, Marine Mammal Effort
and Sightings), subsets of data file type (e.g., Porpoise versus
Non-porpoise Set Logs), errortype (blank, range, legical, or
character) , and year. Retrieval from this database is
accomplished using the ALADIN program DERCT.80 which produces
either a formatted computer disk file of the freguency of error
tallies, or a printer report of the same information.

The error statement database (ES80DB) contains both long and
short error messages that describe the error detected by the edit
program. A listing of the contents of this database is printed
and archived as the Logical Error Statements book for all edit
programs developed during a calendar year. It serves to document
the criteria used to code the logical errors, and identifies the
specific logical error detected during execution of the edit
program. Records are appended to the database ES80DB using the
FORTRAN program UPEROR.MN, or the ALADIN program UPERST.B80, and
an input file of statements described below. Many of the error
statements remained unchanged between years, and the archived
records within ES80DB, for instance, can be used to create
records for 1981 edit programs (ES21DB). Retrieval from this
database is accomplished using the ALADIN program DERST.80 which
produces either a formatted computer disk file of the fregquency
of error tallies, or a printer report of the same information.

There is a 24-character length key for both databases,
constructed wusing parameters passed by the subroutines, or
contained in the labeled common bleck ERROR. The key is built
using the following parameters.

DATASETID: Columns 1-8 identifies the field ceollection or coding
format by year. Passed from labeled common block ERROR

as DATSET (MUST BE ONE OF THE FOLLOWING).

CSEDITEO
SLEDIT&0
VAEDITS0
MMEDITS0O
BLEDITSD
LHEDITSD
ASEDITAD

GRPCOD: © Column 9 identifies multi-format field collection or

coding formats. Passed from labeled common block ERROR
as GRPCOD (MUST BE ONE OF THE FOLLOWING) .

i

"HY - Non-porpoise Set Log — SLEDIT
P - Porpoise Set Log SLEDIT
'E' - Effort MMEDIT
-1 - Sightings MMEDIT
vt - all others VAEDIT, BLEDIT, CSEDIT

ERRORTYPE: Column 10 identifies the nature of the field error or
logical error. Passed from labeled common block ERROR
as ERRORTYPE (MUST BE ONE OF THE FOLLOWING) .

B - Blank error (Field)
c - Character error (Field)
L - Logical error {Logical)
R - Range error (Field)

CARDSEQ: Columns 11-12 for FIELD errors, the card sequence of a
field (e.g., "01") within a multicard format data set.
For - a single card format the code is "01" (Length 2).
Blank for LOGICAL errors. Passed from named common
block ERROR as CARSEQ.

BEGINCOL: Columns 13=-14 for FIELD errors, the beginning column
number of (e.g., %"29") the field having an error.
{Length 2): Blank for LOGICAL errors. Passed by the
calling subroutine.

ENDINGCOL: Columns 15-16 for FIELD errors, the ending column of a
field (e.g., "34") having an error. (Length 2). Blank
for LOGICAL errors. Passed by the calling subroutine.

ERRORCODE: Columns 17-24 for LOGICAL errors contain the logical
error number of the statement. Passed by the calling
subroutine as ERRCCDE.

Logical error statements are coded onto FORTRAN coding forms
which are 80 columns in length. To accommodate statements that
are longer than the SHORT STATEMENT length of 54 characters,
columns 25-26 of the coding format are reserved to indicate the
sequential number of coding lines needed for any length statement
{up to 99 lines of 54 characters each). When the keypunched data
is used as input to the update procedures (ALADIN program
UPERST.80 or the FORTRAN program UPEROR.MN, +the segquential
numbers in columns 25-26 are utilized but not stored in the
database ES80DEB. The ALADIN program DERST.80 restores the
sequential numbers to columns 25-26 when a "dump" is made of the

database.

37

ERROR COUNT DATABASE (ECBODB)

We desired to keep track of which errors were most frequently
detected in the input data to assist in subsegquent training of
obsarvers and to address possible ambiguities with data
definitions., The two different error types, field and logical,
are recorded via the calls to the field verification subroutines
(BLANKT.DP, RANGIT.DP, VALUIT.DF, VERFIT.DP) or the logical error
type subroutine ERRLOG.DP. When a field verification reoutine is
called and an error is detected, an error code "key" is
constructed and passed as a parameter via a call to ERRFIL. The
"key" is constructed to access the ALADIN database ECB80DBE for the
particular error type, etc. detected.

Subroutine ERRFIL, all entry point of ERRLOG.DP, concatenated a
key consisting of the data file type, the error code, the data
file name code, and blanks. The data file type is derived from
columns 1-8 of labeled common block ERROR element DATSET. The
data file name code is columns 9-12 of DATSET. A retrieval from
ECBODE is attempted using this key. If the record already
exists, the occurrence is tallied. If a record does not exist, a
new record is created and the tally set to 1. In this way field
errors are tallied in the ERROR COUNT database.

Examples of valid keys for the database ECBODB are:

({ DATASETIDHGRPCOHERRORTYPE+CARDSEQ+BEGINCOLAENDCOL+ERRORCODE)

'SLEDITBONL ERROR112' = 1980 non-porpeise setlog logical
aerror 112

'SLEDIT80PRO10306 ' = 1980 setlog range error for
physical card 1, columns 3-6

The formatted structure of the database ECBODB iz as follows:

Element pame Columns Element type
ERROR KEY 1 - 24 Character

DATASETID 1 8 Character
GRPCOD g G Character
ERRORTYPE 10 10 Character
CARDSEQ 11 12 Character
BEGINCOL 13 14 Character

16 Character
24 Character
28 Integer

ENDINGCOL 15
ERRORCODE 17
COUNRT 25

N O T |

38

ERROR ETATEMENT DATAEASE (ES80DB)

Logical errors are tallied the same as the field errors, the only
difference being the user supplies the error code. When a logical
error is detected, subroutine ERRLOG.DP is called and passed the
user specified eight character logiecal error code (e.q.,
"ERROROO1™, "ERROROO2"). Error codes correspond to logical error
statements which are stored within the database ES80DB.

ES80SE database is a storage area for the legical error messages
corresponding to the logical error verifications performed within
the main edit programs (Fhase 3). The error messages were the
basis by which the logical wverifications were coded by
programmers. They are the explanation of the logical error code
which is printed on the error report, and documentation of the
logical wverifications performed. They may be accessed and
printed directly on the error report or printed for reference.

When logical errors are reported via the call to ERRLOG.DP, the
logical error code is passad as a parameter. Optionally,
ERRLOG.DP may be teld to retrieve the long or short message from
ESB0ODB and display it or the printer. This action is contrelled
by the value of ELEVAL (see sections VI and VII), What ERRLOG.DP
does to retrieve the necessary message is to form a key
consisting of the data file identifier code (columns 1-8 of
DATSET), the group code (GRPCOD), the error type (ERRORTYFE), sSix
blanks, and the 8 character logical error code (e.g., ERROR001 or
ERRORO02) . This key is used to access the database ESBODE. If a
record deoes not exist for that key, ERRLOG.DP prints eof that
information. Examples of logical error statements are included in
Appendix 3 of this document.

Examples of valid keys for the database ESEB0DB are:

{ DATASETIDHGRPCOD+ERRORTYPE+' '+ERRORCODE

'SLEDITEBONL EREOR112' = 1%80 non-porpoise setlog logical
error 112

'SLEDITEOPL ERROROOL" = 1980 porpoise setlog logical
error 001

The formatted structure of the database ESBODE is as follows:

Element name Columng Element type

ERROR FEY 1 - 24 Character
DATASETID 1 - 8 Character
GEPCOD g = 9 Character
EERORTYPE 10 - 10 Charactear
blanks 11 - 16 blanks
ERRORCODE 17 - 24 Character

SHORT STATEMEMT 25 - 78 Character
LONG STATEMEMNT 79 =133 Character

39

IX. hcknowledgements

There have been a great many persons involved in the evolution of
the porpoise data management system. Dr. W.F. Perrin (SWFC)
encouraged us to apply computer capabilities to these data and
provided the initial support and direction in our deing so. D.
Roll and D. Mackett (SWFC) provided subsequent support and
guidance in development of the first edit programs. Many of the
observers who collected data while aboard tuna purse-seiners
provided useful comments on the data forms, data definitions, and
editing criteria. The data groups at the SWFC and at the SWR
office were an integral part of this development (F. Ralston and
J. Scordino). We alsc thank the numercus computer programmers who
have developed the edit programs using the common subroutines,
and whoe in scme cases, have recommended improvements and
additional "common subroutines". Special recognition is deserved
by K. Wallace (SWFC) wheo worked as an observer, data editor,
computer programmer, and who during the 19%80s, implemented the
common subroutine package on yet another computer system. Een
also provided helpful comments during the drafting of this
report.

Refarences

Butler, R.L. and C.W. ©Oliver. 1980. Program descriptions,
listings, and documentation for the common edit subroutines:
Forpoise Data Management System. Southwest Fisheries Center
internal reports. Southwest Fisheries Center, La Jolla,
california. 100-plus pages.

Oliver, C.W. 1983. Documentation of aerial survey sighting and
transect forms for the 1977 and 1979 eastern treopical
Pacific cetacean surveys. Southwest Fisheries Center Admin.
Report No. LI-83-20. Southwest Fisheries Center, La Jolla,
California. 35p.

Perrin, W.F. 1975. Variation of the spotted and spinner porpoise

{(genus Stenella) in the eastern tropical Pacific and Hawaii.
Bull. Seripps Inst. Oceanography, Univ. of Calif. 206pp.

40

Appendix 1. How to read intra-variable logic: explains the blank,
range, logical error coding utilized during 1974-1978
for edit programs.

HOW TO READ INTRA-VARIABLE-LOGIC

Intra-variable logic is a coined expression for the Boolean
"IF, THEN" type error checking system designed to allow complex
variable relationships to be handled without new program coding.
Its positive attributes include ease of coding, generalized error
reporting, and documentation of the errors checked with a
subroutine called TRCWOB that prints the error checks performed
in an easily read form. This document is provided to clarify the
syntax of the output provided by the program TRCWOB, which
provides a list of all error checked for by INTRA-VARIABLE LOGIC
code, Some terms should clarified:

CARD AND COLUMM (CARD.COL):

A symbolic means of identifying variables associated with a
logical record consisting of one or more 80-column physical
records. Variables are located on a certain card within multi-
card formats and begin with a certain column. A contraction
was formed (e g., 2.05 for the variable located on card 2
beginning in column 5).

VARTABLES

The input data is contained within array locations. Certain
constants are also stored within the array string. Thus data
and constants may be referenced from the same string. The term
"Data-variable" coins for an element of the array whose walue
arises from the input data source. The term "Constant-
variable" coins for constants.

Within this document, variables are referenced by card and column
numbar, and all variables have their array index wvalues listed at
the end of the statement line following dashes and a referencing
number on the statements which are referenced by the error
reports themselves. ’

Four Boolean legical operators are used: LT (less than), EQ
(equal), GT (greater than), and HE (not egqual). The logical
connactors "OR" and “ANDY are also used. Values within
parentheses contain data or "??77%, Data exists for constant-

variables, and "?7?7?" for data-variables.

The logic flew is entered systematically although each wvariable
may, or may not, have logical relationships coded with
dependencies upon its value. However, the logic structure may
only be reached when the variable is non-blank and within range.
Each logic construct begins with a card-column value to the far
left identifying the begin variable. Fellowing are the two types

of statements:

41

1. 1.01 IF VAR# 1.01 IS EQ VAR# 2.01 (??77)--1--20

2. 1.01 SINCE VAR$ 1.01 IS WITHIN BOUNDS--1
The latter statements merely reflects that since variable 1.01 is
non-blank and within bounds, there is going to be some resultant
relationship, +to be fulfilled, while the former sets up an "IF"
relationship to build upon. Following each expression will be
one or more resultant contingencies of the form:

VARY 2.15 MUST BE GT VAR# 1.15 (7727)--41--7
Thus an "IF, THEN" expression may be formed as follows:

1.01 IF VARf§ 1.01 IS5 EQ ?AR# 2.01 (?22?)==-1-=20

VAR# 2.15 MUST BE GT VAR# 1.15 (?777)--41--7
The above translate to say "IF variable 1.01 is equal to the
stored wvalue of the data-variable 2.01, THEN the stored data-

variable 2.15 must be greater than the stored value of data-
variable 1.15).

Use of YAND™ or WORW,

The word "AND" is used to express additional "IF" statements
within two areas,

1. Compound “IF": An "IF" directly followed by 1 or more
"AND IF™ expressions means that both {all) wIF"
relationships must be valid before the resultant clause
becomes active. The resultant clause may indicate an error
or no error depending upon the construct of the expression.
IF VAR# 1.24 is ME VAR# 2.78 ()=-=-10--70
AND IF VAR¥ 1.17 is EQ VAR# 1.24 (?777)--B-=10
VAR$ 2.13 must be GT VARF 1.13 (?777)-—40-=6--

2. Additional wIFVs 3 An "AND IF" following an "IF®
interspersed by 1 or more resultant clauses exprasses an
entirely new "IF" contingency.

IF VAR® 2.17 IS EQ VAR{ 2.24 (7777)-42-44
VARf 1.52 MUST BE EQ VAR$# 2.84 (5)=--23--T6G=~=
AND IF VAR# 2.24 IS NE VAR# 2.78 {)==44-=70

VAR4 2.24 MUST BE EQ VAR# 2.17 (?777)--44-=42--

42

OR VAR# 2.24 MUST BE GT VAR 2.17 (2777)-=44==432=-=

The logical connector "OR" is used to connect resultant clauses
IL¥ as seen In the last example. However, the "OR" is only in
effect for the resultants having the "OR" and for the first
Erﬁvinus resultant expression before the expression having the
OR"™.

IF VAR$ 2.48 IS EQ VAR# 2.79 (1l)--54--71
VAR# 2.51 MUST BE NE VAR# 2.78 () ==55==T0==
VAR 2.49 MUST BE GT VAR# 2.80 (0)--55--72 ==

OR VAR$ 2.54 MUST BE GT VAR# (2.80 (0)--56-=72 ==

only the last two resultants are connected. The first resultant
must be wvalid regardless of the validity of the following two
resultants or an error report would occcur.

To make use of this readable intra-variable logic, one looks at
the "Begin variable"™ on the edit program output associated with
the error statement. This begin will be found on the HUMN output
listing on the far left of the page (e.g., SLHUMN for Set Log
data). To find a specific error statement, the edit program
output has a reference number (the one with the dashes). This
number will also be found to be the last number on the assoclated
THEN statement.

R.W. Butler second draft (B/25/75); revised C.W. Oliver

d3

Appendix 2. Conversion considerations for the COMMON SUBROUTINES
written in Computer Sciences Corporation (CsC)
Fortran language

CS5C FORTRAN CONVERSION EFFORT (1979-1980)

In eorder to convert CSC INPONET Fortran to some other system's
Fortran, the programmer should be aware of a number of problem
areas. Of primary concern is that the new Fortrans have string
capabilities CHARACTER, concatenation (//), substring (STRVAR
(5:7)), character functions, passed length string variables to
functions and subroutines (FUNCTION A(STRING); CHARACTER
STRING*(*)), and passed length string functions (CHARACTER & ()
FUNCTION STRING (A,B)).

The Porpoise Data Verification System "COMMON SUBROUTINES" used
do develop edit programs were modified so that they never
interface directly with csc system routines, except for programs
GENER1, GENER2, or GENER3 and those routines that are dependent
on CS8C data access or naming conventions; ONDSK2, STRIF2, ERRLOG,
and CSEQ.Pl (CSEQ.PZ has been eliminated).

GENER1 has as entries, integer functions as follows:

1. FYRFYX - identical to CSC's FVRFYS.
2. FERECX - identical to CS5C's FBRECS.
3. FIVALY - identical to CS5C's FIVALS.

For these routines to be used in a program, they must be defined
as INTEGER (i.e. INTEGER FVRFYX, FIVALX). There is a logical
variable in GENER1l called ©SC, which is currently set to .TRUE.
and which, for efficiency, causes these functions to inveolve the
appropriate CSC functions. On converting to a new system, the
variable CSC needs to be set .FALSE., and all function references
within GENER1 that reference CSC routines need to be made
comments or the section of code removed.

GENERZ has a single entry as a character function, FSTRX. This
function returns a character string eguivalent of an integer with
leading zeros. The program which involves this function must
specify the character length of the returned string (i.e.
CHARACTER FSTEX*S, will return an integer right-justified in a
five-character string with leading zeros).

The variable CSC (see above) will determine if CSC functions will
be involved or if an "ENCODE" will cenvert the string. The form
of the ENCODE may have to be changed te conform with the system
being used.

GENER? has as subroutine entries:

1. FDEFNX - identical to four argument call to CSC's FDEFNS.

44

2. FDEFHS - identical to five argument call to CSC's FDEFN%.
3. DOYX - identical to CSC's DOY.
4. TODX - identical to CSC's TOD.
5. UDAT2X - identical to six argument call to CSC's UDAT2S.

These subroutines should have, on any system to which conversion
is made, egquivalent functions or subroutines. These special
entries were created only to eliminate the need for a conversion
programmer to have to find all references to these routines in
the various edit packages,

The programs ONDSEZ, STRIPZ, ERRLOG, and CSEQ.Fl have not been
modified, nor have their calls, even though they are CSC
dependent. These routines depend on CSTS file naming conventions,
MANAGE data base capabilities or special capabilities of CSC's
editor. ©On conversicon, they will have to be specially rewritten.

Corrections that were made to the Porpoise Data Verification
System COMMON SUBROUTINES used with edit programs are:

1. Variable length character functions P and FSTRS. Function P
remains, but the routine that invelves P must specify a
fixed length (i.e. CHARACTER P#8). References to FSTRS were
changed to FSTREX with a fixed length specification (i.e.
CHARACTER FSTRX*5) and any programming changes required to
handle a fixed length return string with leading zerces.

2, Variable length character strings were changed to fixed
length.

3. Tha intrinsic function SUBSTR. All substring references of
the form SUBSTR (STENG,N,L) were changed to the ANSI
standard of the form STRNG(N:M), where N is the position of
the beginning character and M the ending character position
within the string STENG of the needed substring.

4. ENCODE's and DECODE =. Since the syntax of ENCODE and DECODE
is different for different system Fortrans, they were
eliminated from the porpoise Data System edit routines by
using other available routines for converting strings to
numeric and visa versa, mainly FVREFYX and FSTRX.

5. READ with PROMPT. All reads with prompt as in;

READ(5,*, FROMPT='ENTEE DATA-') INFV
were eliminated with combination writes and reads.
6. CSC Routine FVRFYS, FBRECS, FIVALS, FDEFN%, DOY, TOD, and

UDAT2S. These routine calls (or function references) were
changed to FVRFYX, FBRECX, FIVALX, FDEFRX (for a 4 argument

45

call or FDEFNS for a 5 argument; all), DOYX, TODX, and
UDAT2X. In addition FVRFYX, FBRECX, and FIVALX needed an
integer type specification in the calling routine (i.e.
INTEGER FVRFYX, FBRECX).

In addition possible problems may exist with other systems with
Fortran programs if a conversion from CSC is attempted. Some of
these potential problem areas are:

1.

3.

Note:

CSC Routines FSEQS5, FCHRS, FVALS, FDVALS, FTRMMS, FTRMBS,
FTRIMS, FPADS, and OBEY.

. Read from internal storage (internal file) as in:

READ (DATA, 10) VAL

This type statement can normally be replaced with a DECODE
statemant.

Any legic which depends on 6 characters per word.
All of the above mentioned special CS5C routines or
statements can be referenced in CSC's Fortran Reference

Manual and related Network Release Manual's, or the CSC
Technical Notes.

46

Appendix 3. The main edit program (CSEDIT.81) and seguencing
subroutine (CS00CS.81) utilized on data collected on
the 1981 Cruise Specification Record data form.

The 1%81 Cruise Specification Record edit program was written
during 1980 for use with data to ke collected during 1981. The
common subroutines initially used were the 1980 versions
described within this document. During the conversion of the edit
programs (and the common subroutines) to the UCSD VAX computer
system, some of the common subroutines were subsequently
modified. This example represents the coding which was performed
using the 1980 subroutines on the CSC computer system during
1980.

The 1981 Cruise Specificatieon Record data form (Figure 1) was
completed for each observed trip (IATTC or WMFS observer). A
logical record consists of three 80-ceolumn long physical records.

The physical records undergo edit by the main edit program
(CSEDIT.81). When a logical record is considered "ALL OE", it is
appended to the archival database for the year (e.g. CS81DB.DAT).

This appendix is provided to demonstrate the program code for a
fixed-format logical record censisting of three physical records
which has no relationship with another logical record. This is a
relatively simple record to program an edit for because there is
a eingle logical record grouping to edit, consisting of three
physical records.

The blank and range criteria used to implemented within the edit
program code is provided in Table 1, and the leogical error
criteria in Table 2. The coding format and data definitions for
this record i= awvailable in the 1981 Observers Field Manual

archived at the SWFSC, La Jolla, Califernia.

The program listings are provided for the main edit
(CSEDIT81.FOR) and sequencing subroutine (CSSEQ81.FOR).

47

Figure 7. 1981 Cruise Specification Record data form.

- n

BOAS - WS DEPT. OF DOMMENCE

A, PO Ba-aT1
SOrad v
" CRUISE SPECIFICATIONS RECORD
, COMPLETED
CRLESE | A BOAT P G DATE SAILED DATE AETURNED ! Y
- VEESEL CAPACITY
]] COUE BLALT mmrmum? ¥t a1, ooy hit] 1. DAy H
ﬂ 1 . D
1 P 1111 | i1 ¢t I | 1 |
1 i G w0 [1% TF “ F1 22 25 ar Fi
SMLED RETURKED
FRCM: T
ANTITOROUE
CESEANVER DATA FEPD0IS HELICCHTEATY BOWTHAUSTERT CAALET
OES QBS. r FHAL [SEQL TRl TYPE AEEIAAD ¥ X . X
TYPL | TIWPS [SETS SEEH| # CALSE GEAR M - N M
| 1 1 11 | I:I D D D
30] a5 ar] 41 Lk 45 £5 &£ 48
THE RET i
B g
TELR WY MET - HET EE PAEL, PANEL PANEL
KET LEMGTH DEPTH [OEFTH| LAESH SITF seFElvpaser, ¥ | gm | LEKGTH JDERTH | CEPTH] MESH SIZE
LT EFid)] Eri-'-'-:p-ﬂ fra & 25744 e == #F L PFst B Seewny fim & O
| | 1 [| '_I_L | [| | 4 1
] & b &7 9 £ A3 &5 Ba F1o) Tz 4
Cafuy
L, VEASEL NAME
0 2
| I [O T T T T A TN A N
d] P k1]
CPERATOR CEATIFICATE HOLDERA
CERTWICATE 2afiacs
‘?L_L_I_I_,LJIII[IIILFIIIIt¢I1ItI1IJIIL}IFI
Ba
VESEEL DEATIATE HOLDIR
CEATFICATE BTSSR
| .
Etll11l1llIJL1!|LlLIE1|lL1:r1J_Lq1|1r

48

3%

1981 Cruise Specifications Record Form

Data Element Blankness and Range Editing Specifications

Recard 1 of 3

Character Blankness flange
Data Element Columns type oK? Lower Upper
Cruise Humber 1-3 N No 670 785
Record Number 4-5 M No 1 1
Vessal Code 6-9] No 29 460
Year Boat Built 10-11 H Ko a4 B0
Fish Capacity (short tons) 12-15 H o 401 2000
Vessel Class 16 M Ko 2 3
Date Sailed -Yr 17-118 N Ho Bl 81
Date Sailed -Mo 19-20 M No 1 12
Date Sailed -Day 21-22 N Ho 1 i1
Date Returned -Yr 23=24 N Ha 81 a1
Date Returned -Mo 25-26 H Ho 1 12
Date Returned -Day 27-28 N Ho 1 31
Completed Trip ¥ Y/N 29 N Ho 1 2
Observer Mumber 30-32 N Mo 34 370
Observer Type 33-34 1] Ho 1 6
Number of Trips 35=36 M Ho 0 6
Humber of marine mammal
sets seen 37-39 N Mo 0 300
Sequence Humber a0 N Mo 1 3
Type Cruise 41-42] Ho 1 3
Type Gear 43-44 N No 1]
MNumber of Speedboats a5 N Ho 4 6
Helicopter T Y/N A6 N Ko 1 Z
Bowthruster 7 Y/N 47 K Ko 1 2
Anti-torque Cable ? Y/N a3 N Ko 1 2
Year Net Built 49-50 N Ko 59 80
Net Length (FM) 51-53 N Mo 480 800
Hetv Depth (FM) 54-56 N No 48 a0
Net Depth (STRIPS) §7=-58 M No 8 15
Mesh Size (In. & 1000ths) 59-61 N Mo 375 425
Safety Panel ? Y/H 62 N Ho 1 2
Year Panel Installed 63-64 M Ko 76 a1
Panel Length (FH) 65-67 M No 162 200
Panel Depth (FM] 6E-69 N Ho 6 20
Panel Depth (STRIPS) T0-71 N No 1 4
Mesh Size (In. & 100ths) 72-74 N Ko 113 125
A = Alpha B = Blank N = Humeric

1981 Cruise Specifications Record Form
Data Element Blankness and Range Editing Specifications

Record 2 of 2
Character Blankness Range

Data Element Columns type oK? Lower Upper

Cruise Humber 1-3 H Na 670 785

Record Number 4-5 N No 2 2
Vessel Hame 6-31 A Yes
Subpart of name 6-10 A No
Operator Certificate Holder 32-60 A Yes
Subpart of holder 32-34 A No
Certificate Humber 61-69 A Na
Subpart of certificate 61-63 A No

Subpart of certificate b4-66 N Ho a12 a1z

Subpart of certificate 67-69 N Ha 501 640

A = Alpha B = Blank N = Numeric

1981 Cruise Specifications Record Form
Data Element Blankness and Range Editing Specifications

Record 3 of 3

Character Blankness Range

Data Element Columns type oK? Lower Upper

Cruise Number 1-3 K Ho 670 785

Record Number 4-5 N Ho 3 3
Vessel Certificate Holder 6-34 A Yes
Subpart of holder 6-8 A No
Certificate Mumber 35-43 A Ho
Subpart of certificate 35-37 A No

Subpart of certificate 38-40 N Ko 812 812

Subpart of certificate 41-43 H No 1 140

A = Alpha B = Blank N = Numeric

1981 Cruise Specifiecations Data (1981 format): BLANK, RANGE, and
LOGICAL error criteria.

ERROROO1

ERROROO2

ERROROO3

ERROROO4

ERROROOS

ERRORODG

ERROROO7
EREQROORB
ERROROOS
EREORO10
EFROROI1I1
ERRORO12
ERRORO13
ERRORO14

EREOROLS

ERFORO1G

ERRORO17

ERRORO1E

' BE GTR THAN THE PRESENT OCCURRENCE OF DATE

CSEDITEl L

IF THE ¥YEAR BOAT BUILT IS GREATER THAN 1%&0 , AND THE
FISH CAPACITY IS EQUAL ToO OR GREEATER THAN 0400 TOHS...
THE VESSEL CLASS MUST BE EQUAL TO 3.

IF THE YEAR BOAT BUILT IS LESS THAN 1961,

AND THE FISH CAPACITY IS EQUAL TO OR GEEATER THAN 0400
TONS ... THE VESSEL CLASS MUST BE EQUAL TO 2.
IF THE FISH CAPACITY IF LESS THAN 0400 TONS ... THE
VESSEL CLASS MUST BE EQUAL TO 1.

IF THE PRESENT OCCURRENCE OF OESERVER (1.30) IS5 HOT
EQUAL TO THE PREVIOUS OCCURRENCE OF OBSERVER ... THE
PRESENT OCCURREHCE OF TOTAL OBSERVERS MUST BE EQUAL TO
THE PREVIOUS OCCURRENCE OF TOTAL OBSERVERS + 1.

IF THE PRESENT OCCURRENCE OF TOTAL OBSERVERS (1.40) IS
NOT EQL TO THE PREVIOUS OCCURRENCE OF TOTAL OBSERVERS
« = . THE PRESENT QCCURRENCE OF OBSERVER (1.30) MUST BE
HOT EQUAL TO THE PREVIOUS OCCUREENCE OF QBSERVEER.

IF THE NUMBER OF PORFOISE SETS SEEN (1.37) IS GREATER
THAN ZERO ... THE HUMBER OF TRIPS (1.35) MUST BE

GREATER THAN ZERO.

IF THE GEAR TYPE IS 03 ... THE PANEL STRIF DEPTH MUST
BEE EQUAL TO 02.

IF THE GEAR TYPE IS 03 ... THE PANEL MESH SIZE MUST BE
EQUAL TO OR LESS THAN 125 INCHES.

IF THE GEAR TYPE IS 04 ... THE PANEL DEPTH MUST BE
EQUAL TO 20 FATHOMS.

IF THE GEAR TYPE IS 04 ... THE PANEL STRP DEPTH MUST
BE EQUAL TO 04.

IF THE GEAR TYPE IS 04 ... THE PANEL MESH SIZE MUST BE

EQUAL TO OR LESS THAN 125 INCHES.
IF THE GEAR TYPE IS 05 ... THE PANEL STRIP DEPTH MUST
BE EQUAL TO 01.

IF THE GEAR TYPE IS 05 ... THE PANEL MESH SIZE MUST EE
EQUAL TO OR LESS THAN 125 INCHES.

IF THIS CRUISE SPECTFICATIONS FILE CONTAINS MORE THAN
ONE LOGICAL RECORD SET ... TRIP COMPLETED (1.29) FOR
ALL BUT THE LAST OF THESE LOGICAL RECORD SETS SHOULD
BE EQUAL TO 2.

WITHIN THIS FILE, THE LAST OCCURRENCE OF TRIP
COMPLETED (1.29) SHOULD BE EQUAL TO 1 ... IF NOT ,
THIS MAY COHNSTITUTE AN EEROR.

IF THIS CRUISE SPECIFICATIONS FILE CONTAINS MORE THAN
ONE LOGICAL EECOED SET ... THE ELEMENTS : VESSEL CODE
(1.06) , YR BOAT BUILT (1.10) , FISH CAPACITY (1.12) ,
AND VESSEL CILASS (1.16) FOR EACH OF THE LOGICAL RECORD
SETS EHOULD BE IDENTICAL.

THE FRESENT OCCURERENCE OF DATE RETURNED (1.23) SHOULD
DEPARTED
{1.17) ... IF IT IS NOT , THIS CONSTITUTES AN ERROR.
THE PRESENT OCCURRENCE OF DATE DEPARTED (1.17) SHOULD
BE GTR THAN THE PREVIOUS OCCURRENCE OF DATE RETURNED

51

ERROROL1S

ERROROZ0

{1.23) ... IF IT IS WNOT , THIS CONSTITUTES AN ERROR.
IF THE INITIAL OCCURRENCE OF TOTAL OBSERVERS (1.40) IS
HOT EQUAL TO 1 ... THIS CONSTITUTES AM ERROR.

IF THE PRESENT OCCURRENCE OF OBSERVER TYPE (1.33) Is
EQUAL TO 04 ... THE FOLLOWING ELEMENTS SHOULD BE
BLANE : VESSEL CODE (1.06), FISH CAPACITY (1.12),
VESSEL CLASS (1.16), TRIP COMPLETED (1.29), GEAR TYPE
(1.43), NUM SPEEDBOATS (1.45), BOWTHRUSTER (1.47),
ANTITORQ CABLE (1.48), YEAR NET BUILT (1.49), NET
LENGTH (1.51), NET DEPTH (1.54), MET STRIP DEFTH
(1.57), NET MESH SIZE (1.59), PORP PANEL (l1.62), ¥R
PANEL INSTALD (1.63), PANEL LENGTH (1.65), PANEL
DEPTH (1.68), PANEL STRIP DEPTH (1.70), PANEL MESH
SIZE (1.72), OPER CERT HOLDER (2.32), AND OPER CERT

NUMBER (2.61).

e R R R R AL AR Al Rl
Cruise Specificatfaon Main Edit program for 1981 datas.

Begl

cl.l

nning af the

FROGRAM

FURFOGSE

LAHGUAGE

FEOGRAHMER

DATE

CSEDIT.EI

THE FURPOSE OF THIS PROGRAM 15 TO PERFORH
FIELD AWD INTER-VARIABLE LOGIC CHECKS OM

THE DATA COMTAIMED [M THE CRUISE SPECIFI-
CATIOMS FILE. ALSO A CARD SEQUENCE/SDECK
IHTEGRITY CHECK [5 CARRIED OUT BY SUBROUTINE
CSDOCS.

FORTRAN IV {CSC I[IMFOMET)

GRISMORE; C. LONG

SEPTEMBER 1REOD

titﬂf**ktffi‘t*fiﬁf*iiiibi-ljil-ii----l-i-titiiiitittftiitit#ii#i*iitiii

ciﬁifriipiiilp‘i.lilll.'l.-tittitil.i-itt.titﬂfit*i*tf*i.**."‘..'.".'.

£

L I I I O o I T I O O I~ T I I = I T = T = T - T o O I o IO o I - T]

HD EDIT

CQPFTIOWS HWOTE:

EXECUTION IWNSTRUCTIONWS

ICSEDILIT.E1
CEEXX iFILE WAHME

tERIT GPTIOM

MO EDIT

G0 EDIT

TRUE

FALSE

or

FCSEDIT . B
CSEKE :FILE HAME

GO ERIT
TEUE oR FALSE tLEETIMGS QPTION

ERIT QOPTIOHM

USED WHEM OMLY A& DATA FILE
SEQUEMCIMG CHECK IS DESIRED.

UEED WHEM FIELD OR LOGICAL
EEROR CHECKS ON THE FILE ARE
DEGIRED .

USED WHEM A LIETIHG OF ALL
LOGICAL ERECORD GROUPIHGS
1% DESIRED.

USED WHEM A LISTIMG OF OMWLY
LOGICAL RECORD GROUPINOGS 1N
ERROR ARE DESIRED.

clIiiIlIiiIlIllIrliilIiiIlIilI-iIlitlItitiiiititittﬂiif*ii#ii'ﬂ*!"illi!

c
Cow o
c
c

THPUT FILES:
CRUTSE SPECIFICATIONS IWPUT FILE.

CSEFN -
cg -

PREFIX WAMIMG COMYEMTION FORE IWPFUT FILES.

54

L 2 7]

L

LRI I - I I I = I I I I I I I B I O T I I T I B s I s B I A s B B e I I I - - R R e i i i i e

F¥N - CRUISE NUMBEE.
(READ FROM LOGICAL DEWICE = 10Q.}
FEOHFT DEVWICE - SOURCE OF ALL USER COMHAMDS {(LOGICAL DEWICE = 5).

OUTPUT PFILES:

PRINTER - DESTIWATION OF ALL PROGRAM OQUTPUT (LOGICAL DEWICE = &3.

SUBROUTINES:

ADP SUBEQUTIMES:

BLANKT - VWERIFIES THAT A FIELD 15 NOMN-BLAMK.

CLLSCT - CALLED TO CLOSE THE DATA BASE HOLDIMG THE ERROR COUNTS.

CE0ACE « PRE-EDIT PROGRAM FOR THE CRUISE SPECIFICATIOMS FILE.

EJECTHE =~ CAUSES LINE COUWT TO BE SET AT 54 TO FORCE STARTIHG
A HEY PAGE.

EJECTH - STORES HEADER I[WFORMATION TO BE PRINTED PREEFARATORY
TO STARTING A NEW PAGE.

EJECTE - CAUSES & LINE COUNT TO BE HAIRTAIWNED 1K OGRODER TO
FRIMT HEADIMG [HWFORMATION {(ARGUMENT - MUMBER
OF LIMES TO BE FPRIMTED).

ERECHE - FRIKTE AW ERROR MESSAGE AMD THE PFHYSICAL RECORD 1M
EREOR WHENW LOOICAL WARIABLE ANYERR & FOUND TO
BE TRUE.

EEELDG - DBTAIWNS AM ERROR MESSAGE FROM THE ERROR DATA BASE
AHD POSTE THE TYPE OF ERROR AWD THE WMUHMEBEEER OF
OCCURREMCES 1IN AWHOTHER DATA EBASE.

OPLGET - CALLED TO OPEW THE DATA BASE HOLDIMOD THE ERROR COUMTS.

PrABESY - FUNCTIONK SUBFPROGRAM WHICH CHECKS THE FIELD ARG FOR
MUMEEIC DATA, AND ZEEROD FILLS 1T TO THE LEFT IF IT
15 VALID MUMERIG.

REANGIT - VERIFIES THAT THE VALUE OF & FIELD FALLS WITHIK
SPECIFIED UPPER AMD LOWER LIMITS.

VERFIT - WERIFI1ES THAT ALL CHARACTERS OCCURRBIHG IM OWHE STRING
OCCUR 1IN AHOTHER.

WRAPUP - PRIMNTS OUT THE DATA GROUF.

INFOWNET SUBROUTIHES:

FOEFWY - DEFIWEE AWOD ALLOCATES LOGI[CAL FILES,.

FETRX - FUMCTION SUBPROGEAM WHICE COMVERTS [ITS5 ARGUMENT FROH
AN ARITHMETIC WALWUE TO A CHARACTER STRIMG
EEPRESERTATION.

FERKECE - FUMCTION WHICH DETERMIWES FIRST QCCURAWCE TH

ARG 1 WHICH ALSD ODCCURES 1IN ARG 2.

FRIRARY VARIABLES:

ALPHAS - DATA STRING CONTAIWIWGE ALPHABET & CERTAIM SPECIAL CHARACTERS

ALLELE - USER-ENTERED LOOICAL VARIABLE SET TO TRUE IF ALL DATA BLDCKS
ARE TOD BRE PEIMTED.

ALLSTR - COMTAINWS EMTIRE DATA BLOCK.

AMYERE - SET TO TRUE ON THE DCCURREMECE OF ANY ERROR.

CARSEQ - COMTAINS THE CURREMT CARD SEQUEMCE WUHEBER.

CUEOBS - CUERENT OBSERVER SEQUENCE MUMBER.

ODATEET - COWTAIHS THE PARTIAL KEY FOR THE ERROR DATA BASE.

DT1GITS - DATA STERIMG COWTALMING THE WUMERIC DIGITS.

DEESEQ - COMTAINS THE CURBEMT PHYSICAL RECORD MUMBER.

ELEVWAL - CODE USED TD SPECIFY THE LEWGTH OF EREOR WESSAGE TO PFEIMT.

GRFCOD - EQUALS "P' OR "M" AS SET I5E MARIME MAMHMAL OR KWOT.

55

C HEAD = COMNTAINS PAGE-HEADING CHARACTER STEIMG.
C IRFILE - COMTAINS [NPUT FILE WAME.
[IRET - BEETURM CODE FROM IMFONET SUBROUTIME FDEFRXK.
& LASSEQ - MUMEER OF PMYSICAL RECORDS IM THE DISKE FILE.
C LOGGRP = DATA GROUP IDENTIFIER. BASE 1, IMCREMENT 1, FOR EACH
[DATA SET.
c OGO = ZET TO TEUE WHEM ERRLOG [S CALLED. .
C OLDARR - ARRAY OF DIMEMSION 3 COMTAIWING THE LAST PREWIOUS DATA BLOCK
C OURDBS - PREVWIOUS DBSCRVER SEQUENCE MUMBER.
[ETRING - COMTAINS THE CUREEMT ITHPUT DATA RECORD.
C TOTERR = SET TO TRUE IF FPRE-EDIT FAILED; HALTS EXECUTION.
[WALUE - COMTAINS TMTEQER WALUE BEESULTIMG FROM A CALL TO RAWGIT.
[
| COMMODM AREA DEFIMITION.
[
COMMOMNFERROR S AWYERR, CARSEQ, DATSET, DEESER,
1 ELEYAL, GRPCOD, NODGD, STRIMG,
F TEMP YALUE, TOTERRE, ALLBLK;
X IHFILE
[
Cuw®Ew PEOGREAM VARIABLE SPECIFICATIOM STATEMEWTS.
[
CHARKETER GRFCOD*1, STRIWG*BO, TCHP*80, DATSET¥E,
1 CARSEQ*2, IKWFILE=ZO0, ALLSTR(I)*E0,
F4 OLDARREI }* 80D,
3 ALPHAS*3I0/" ABCDEFGHIJELMMOPARSTUWHXYZ."&M S,
b PIGITS* 10/ "0125456 7890, HEAD*&D,
5 P*8, FSTEX*&, WUHMST*4
c
IMTEGER DPSKSEQ, ELEVAL, ¥ALUE, [RET, CURGEES, OUROEE
IMTEGER FERECK , STARTC
c
LOGICAL AMYERRf.FALSE./, TOTERR, ALLEBLE, WOGO
=
LENGTH PL{™*}
c
CRARACTER GODEDITHT
c
DATE ELEWALfO;, GRPCODS' 1 J
C

n-t-. SECTION -l TS L EEEEEE SRS s R R 2RSS ESREREE R R RT R AR R RN R AR R AR RS R R R B R NEEEEEEES]
:-t-. BEGIN MAIM PEOGRAM Lﬂﬂtl;. IR R E R EEE R EE s AR R E SR E AR RS R TR R SR RN R RE S

C¥®%® CALL THE CARD-SEQUEMCIMG PRE-EDIT PROGERAM.
CALL CSODCE
I1#¥ ¢ TOTERR } &0 TO 19F%
ELEVAL = 1
C*®*® OQPEN ECE1DB DATA EASE. (THIS IS5 AM EMTRY POIMT MITEIM ERELOG.D
CALL OPLGCTL{'ECEIDE 'y

C CALL OFLGSTC'"ESEIDE "3
CALL EJECTRCTD

56

Lal

PROMPT USER TO GOSNODGD EDIT.

WEITE{&, 5D

3 FORMAT(®" ENTER "'GO EDIT*®*' OR '"HOD EDIT®"',"}
READ(S,4) GOEDIT

4 FORMATCAT)
IF{ GOEDIT .EQ@. 'G0 EDIT')} GO TO &
IF{ GOEDIT .E@. 'NO EDIT') GO ToO %9
WRITE{&,5) GOQEDRIT

S FORMAT(' RESPONSE - ",AT," WOT ''GO EDJT"' OR *"'MO EDIT®",."')
o TO 09

& COMTINUE
REMIND 10

Cw & ESTABLISH DATA BASE KEY.

CALL FOEFMXCIRET 1TQ,INFILE,'STD)
DATSETCV:8)="CEEDITAT

[
Cewem PROHPT USER FOR VALUE OF ALLEBLE.
C
WRITE(&, 21
2 FORMATL' EMTER TRUE/FALSE FRIMT ALL DATA GROURE.Y J
READ{S ") ALLBLE
LASSEQ = DEESEQ
DEESEG = 0
c
CE®w TaP OF READ LOGR.
c

E0 COMTIWWE
oo 30 1=1,3
READCID, 1, END=9R9) ALLSTRCI}
T FORMATCABGD}
A0 CONTIWUVE
LOGGEP = LOGGRP =+ 1

C DETERMIWE WUMBER OF SIGENIFICAWNT CHAR'S IH LOGOGREP.
MUMSET = FETRELLOGGERP)

ETARTC = FERECMLHUMST, "123454T89")

1F{ STARTC .EG. 0O) STARTC = 1

[l HEAD UP OUTPUT PAGE.

HEAD = #%®& ESFEQRIT.BY1 =--- IMPUT FILE:'SFINFILECTz8B)/S
17 LOGICAL GROWP '/7F MUMSTO(STARTC:D

CALL EJECTH(HEAD)

CALL EJECTR(S5&)

[EECTION 2 Tkl I it s s R s R s RN s R RS R EERRE R SRR R RS R AR R R R R R R R R R RS N LR RN

C**® VERIFY THE FIELDS OF CARD Hi, ottt it ittt i st st mastiesnnornsnnoensuses

Cw*® BEGIN MITH BELAMKMESS AMD RAMGE CHECKS.

57

35

36

3T

&0

&1

CARSEQ='01°¢
DEESEQ=DEESEQ+HT
ETEIHG=ALLESTR{1)

CALL BLAMET(T1,33
CALL EAMGITCT, 5, &T0,TAS)

CALL BLAMNET(S,2)
CALL RANGIT(&,2,1,1)

CALL BLAMETIS, &)
CALL RAMGIT(& &, 002% DL60)

CALL BLANETC1D,23
CALL RANGITOID,2 44,80%

CALL BLAWETC1Z,43
CALL RARGIT{1E,4,0401, 2000}

CALL BLAKETC1&,1)
CALL RANGIT{14,1,2,3)

CALL BLAWNETCIT, 2}
If ¢ WOGED) GO TO 35
CALL YERFITCIT, Z2,DIGITS)
CORTINUE
EALL RAMGIT(17,2,81,81)

CALL BLARKT(I®,2)

1F (WOGED » 490 TO 36
CALL VERFITC19,2 DIGITEY
COMTINUE
CHRLL RAMGITCI9,2,1,.12)

CALL BLAWNKTI21,2)

1F ¢ WOG® 3 &G0 7o 37
CALL VERFITC21,2,01GITE)
COMTINUE
CALL RAMGTTC21,2,1,31)

CALL BLANET(23,2)
IF { W@go } G0 TO &0
CALL VERFIT{23,2,0IGITE}
COMTIMUE
CALL RAMGIT(25,2,81,81)

CALL HLLHET[Eﬁ,E}
1F € HOGO) &0 TO &1
CALL YERFIT(25,2,01G1T5)
CONTINUE
CALL RANGITC(25,2,1,12)

CALL BLAMETOZT,2)
[F { MOGO)} GO TO &2

53

2

45

CALL VERFIT{2Z7,2,00G1ITS}
COMTINUE
CALL RAMGIT¢27,2,1,31}

CALL BLARET(Z® 1}
CALL RAMGIT(Z2P,1,1,23

CALL BLANKT(30,3)
IF ¢ WOGO) B0 To &5
CALL YERFIT(30,3,DIGITS)
CONTEHUE
CALL RANGIT(30,3,34,370)

CALL BLAMET(3I3 23
CALL RAWGITE(3ZS, 2,071,046}

CALL BLANET(SS,2)
CALL RANGIT(35,2,00,06)

CALL BLAWNKT(IT,3)
CALL RAWGIT(3T,3,000,300)

CALL BLAWET(&O,173
CALL RANGITC&O,1,1,3)
CUROBS = WALUE

CALL BLAWKT(&1,2)
CALL RANGITC&1,2,01,03)

CALL BLAWETI£3, 2}
CALL RANGIT(&3 2,011,087}

CALL BLAKET(&5,1)
CALL RANGIT(&S,1,4,6)

CALL BLANET(&SE,1)
CALL RAMGIT(&&,1,1,2)

CALL BLANKT(&T , 1)
CALL RANGITCAT,1,1,2)

CALL BLANETL{LE 1%
CALL RAMGITL4B,.1,1,2)

CALL BLAMETLAT, 2}
CALL RANGITC&9,2,5%,80)

CALL BLANKT(S51,3)
CALL RANGITCS1,3,480,800)

CALL BLAMET(54,3)
CALL RANGIT(S54,3 048,090

CALL BLAWET(S57,2)
CALL RANGIT(ST,2,08,15)

59

CALL BLAMET(S®,3)
CALL BAWNGITCS?, 5,575,425

C
CALL BLAMEKT(&2,1)
CALL BRANGITC&Z,1,1,2)
G
CALL BLAMKT(&N,2)
CALL RAMGIT(AS 2, 76&,B1)
cC
CALL BLAMKTCAES,3)
CALL RAMGITCES,3,162,2002
g
CALL BLANKT(GE,2)
CALL RAMGIT{&8,2,08,20)
C
CALL ELJ.I‘H’T{TEI,E}
CALL RAMGIT(TO,2,01,04&)
&
CALL BLANKET(FZ,3)
CALL RAMGIT(7Z, 3,113,125}
C

ce*%% BEGIM IMTER-VARIABLE LOGIC CHEGCKS OK FIELDE OF CARD #1.

c
EtE* EERGRODT
c
IF (P{ALLETR{13C¢10:113) LLE. "&60"] GO To 100
IF (P{ALLSTRC13¢92:715)) LT. "0&£00") 66 7O 100
IF §f (ALLSTR{12¢1&:71&)) .E@. "3} G0 Td 100
CALL ERELOG{'ERROROOT ")
100 COMNTIMNUE
C
Corwd® ERRORDODZ
C
IF (ALLETRE1}C10:113) .GE. "&1°%} GO TOD 114
IF {PCALLETRCTCIZ2:15)) LT, *"0&00"Y GO TO 1170
IF ¢ (ALLETRLI)C1G6:18)) .EQ. 2y GO TO 110
CALL ERRLOGL"ERRORDOZ")}
110 COHTIMUE
[
CHw®S ERRORDDS
C
[F {P{ALLETRLTIC(T122153) GE. *0400°') G0 7O 120
IF ¢ CALLETRL1}C1&6c163) JE@. *1V') G0 T 120
CALL ERRLOGC'ERRORODOQI ")
120 CONTINUE
c

C#®w HEXT TWO CHECKS [WNVOLVE PRESEMT AND PREVIOUS DATA SETS. SEIF THEM IF
C*** HO PREVIOUS DATA BET.

C
[F {P{OLDARRCTII(4:533 .ME. *01°3 GO TO 145
c
LEee ERRORODG
c

&0

ITF (FCALLSTROTIICID:32)) E@. PCOLODARRBCI)}C(3I0:322)) GO0 To 130
OUROBE = OURDESE + 1
1F (OUROBE .EQ. CURDBES) G® TO 130
CALL ERRLOG("ERRODROOL ")

130 COMTIMUE

=

Ce=®® ERROROOS

=
TF (PLALLSTROTIICAD:&0Y) .EQ. PCOLDARRCTICLO0:4033) &0 TO 140
TF (PLALLETROTICSO:52)) .WE. PCOLODARRCNICEO:3233) &G0 TO 140
CALL ERRLOG{'"ERROROOS "'}

140 COMTIMUE
C

CE¥** EWD OF PRESENMT ¥E. PREVIOUS DATA SET CHECKS.

145 COMTIMUE

C
Cuew® ERROROOQG
C
IF (PCALLETRLTILEF:5%)) .LE, "0O0') o0 TO 150
IF (PCALLSTRLYICSE 542 a7, '00' 3 GO 7o 150
CALL ERRLOGL'ERROROO&")
150 COMTINUE
c
CeE=®=® ERRORODT
c
1F (PLALLSTRETICEATs&4d) JHE. "03") GO TO 170
IF CPLALLSTREIICTO:TI2) LEQ. "02') GO TO 160
CALL ERRLOGC'ERROROOF"}
160 CONTIHUE
=
ce#s% ERRORODE
T
IF ¢ (ALLSTRCIMLF2:T&)) E@. *"1257') &0 TO 170
CALL ERRLOG("ERRORODE")
170 COMTIMUE
4
Ced® ERRORDOP
C
IF CPOALLETROTIDICAT 4400 LME, "D&') Go To 200
1F f CALLETRETILEB:6%)) .EQ. "20') Go TO 1&0
CALL ERARLOGL"ERRORODS" Y
180 COMTINUE
C
Ce#®* EREOROTD
c
IF CPEALLSTROTILFO:T13Y .EQ. '"O&4') GO TO 1%0
CALL ERELOGL'ERRORDTIO"}
190 COMTINUE
C
Sl ERRORDT
e .

I[F (PEALLSTROIICT2:7&33 .LE. "125°) GO TO 200
CALL ERELOG{'ERRORDOT1']
200 COMTIKUE

6l

c*=* ERRORO1Z

c
1F (PCALLSTRCT1)CAI:4643) .NE. "054) Go Tao ZE0
IF (PCALLSTRCTI)¢TO:F123 .E@. 017} &6 Ta 210
CALL ERRLOGC'ERROROGIZ")

210 COMNTIKWVE

€

Lwaw ERROEDOTR

c

IF (PCALLSTREIICF2:T43) LE. "1254) od ToO 220
CALL ERELOGC'ERRORO1E')
220 COHNTIWUE

C*¥** ERROROTS

[+
IF ¢{LA%SEQ - DSEEEQ@) .LT. ¥ } GO Ta 230
IF CALLSTROTICZEF:2%) .Ea@. "2' 3 GO To 2340
CALL ERRLOGC"EREOROTL"}
2%0 COMTIMUE
c
cEww ERROROD1E
c
IF {{LASSED - DSKEEQY .GT. @ 3 OO To 240
IF (ALLSTRE1IC29:29) .EQ. "1®) GO TO Z2&0
CALL ERRLOGL"ERROROTS "}
240 COMTINUE
=
CEw® EEROROTE
C
IF EPCOLDARRCT}ICELE:S5)) ME. "O1°%3} GO To 250
IF CALLSTRETNES216) (EG. OLDARRC13CS&:14)) GO To 250
CALL ERRLOGC'EREBORDIE")
£%0 CONTIMNUE
C
Cww® ERROROVT
c
IF EPLALLETRETIC23:2B)) .G6T. PCALLSTROTIDCIT:=2233) GO TO 240
CALL ERRLOGC'ERRQRODIT")
£60 COHNTIHUE
C
CEs® ERROAOTE
C
IF CPCOLODARBEYIEA4:53) .WE. '01"} GO TO 270
[F CALLSTR{TICTIT:22) .GT. OLDARRCT13(23:28)) GO To 270
CALL ERRLOG('"ERROROTA Y
2T COMTINUE
c
C*=* EREORODTY
=
IF [(DSKSEEQ .cT. 1} Ga TO 80
ITF CALLETREVTHCAD:60) .EQ. '"1'} 4O TO 2840
CALL ERRLOOC'ERROROT®")
280 CONTIMWUE
C

62

pwEs END OF IMTER-VARIABLE LOGIC CHECES OK CARD #1.

M
c
ce*& URITE AMY RECORDS WHICH ARE [M ERROR.
C
CALL ERRCHEK
Cc

oo EECTION 3 i-'ii.--'.*'*-‘ib-[--iitti**'*jqﬂll-i..‘titt*-‘.‘--‘....‘.‘..’.'l'."l‘."l‘."l‘
Chmw YEEIFY THE FIELDSE OF CARD FE. et T I 22202 R R R TR R R A AR R B E BB RE LS

CARSEQ@='D2"
STRING=ALLETR{Z)
DEKSEQ=DSKSEQ+1

CALL BLAWKETC1,3)
CALL RARGITE1,3,6T0,7ES)

CALL BLAWET{%, 2}
CALL RANGIT(& 2,2,20

CALL BLAWET{&,5)
IF (Woed 3 &0 7O 300
CALL WERFIT(& 246 ALPHAS)
00 CoRTIKRUE

CALL BLAWNETCE2 3}
iF § HW@GD) GO0 To 305
ChALL WERFIT(32,2%9 ALPHAS)
Z05 COMTIMUE

CALL BLAMKTLAT,3)
IF ¢ MDGO 3 GO TO 510
CALL VERFITCAT,53,ALPHAS)
F10 CONTINUE

CALL BLAWNET{&4& 3}
IF ¢ Wogo 3 &6 7O Fi5
CALL WERFITL&L 3, DIGITS)
I15 CONTIKWUE
EALL RAMGIT{&4 3, ,B12,812)

CALL BLAMETLET 3}
1F { Wopgo) &0 To 320
CALL VERFITLAT, 3 . DIGITE)
320 COMTIMUE
EALL BANGEIT(AT,3,501,64010
cew® YRITE AWMY RECORDSE WHICH ARE 1IN ERROR.
CALL ERRCHE

C*®# :EEITJUH ' *q-*--.....;.--.1-.1.-...1-..-.--ntai-i-titti-tﬁi-----tii-t-ﬁl-q-il-l--liiiirii
o T EEEEREE R R R N B N R B R
g*%% YERIFY THE FIELDS OF CARD #3, ®mwassssasamsasamssssomss

CARSEQ='03"

63

STRING=ALLETR{E)
DEKSEQ=DSESCO+1

CALL BLAMETC1,5)
IF § MOGO) G& TO 400
CALL RAWGITC1,3, 670, TES)
L00 COHTIMUE

CALL BLAMET(& 2}
CALL EAMGIT(S,2,.3.3)

CALL BLAMETCH,3]
CALL VERFITCA, 29, ALPHAE)

CALL BLAMWET(ES, 3]
IF ¢ MOGO) GO TQ 405
CALL VERFIT(35 ,3,ALPHAS)
0% COMTIMUE

CALL BLAMET(I&,3)
IE § MOGO)} GO TO 410
CALL VERFIT(3IE,3,DIGITE}
10 COHTIMUE
CALL RANGIT(IE,3 812,.812%

CALL BLAWET(41,3)
IF ¢ MOGO 3 GO TO 415
CALL VERFIT(41,3,0IGITS)
415 CORTINUE
CALL RAWNGIT(&1,3,1,1407

LEEw BEGIN IWTER-VARIABLE LODGIC CHECES OW FIELDS OF CARDS #1 & 2.

ERROREDZO

L I]

GO TO &20
SAND .
+AND .
~AND .
~AHD .
LAND .
SAND .

IF ¢ PFg ALLSTRET3¢33:343) HE. "0&" 3}
IF {f ALLSTR{1)(&9 3} .E@. * R |
ALLETRCT1X{12:15) .E@. L |
ALLSTRCTIIC 16216 .Ea. * L |
ALLSTROT1I(2¥:29) ~Ed. * vl
ALLSTRLTI(&43 44D ~E@. 1 LI |
ALLSTRCT1IC45245) ~EQ. ¢ LI |
ALLSTRCT1XC&T 24T .E@. 1 "y LJAND.
ALLSTRL1XI(S1:52) JEQ. * Ty LAND .
ALLETRLT1I(S54:56) SEQ. 1 "y LAKD.
¥
¥
¥
]
¥
¥
¥
)
J

£

ALLETROT)(5T:58) .E@. " i sAHD .
ALLETRCII(SR 61D ~-E@. " N AHD .
ALLSETREC1ICAE2: 62D ~E@. 1 i ANHD .
ALLSTRET1I(AEE 144 -Eg. * " L
ALLETRET1I(CAS4T) ~E@. N AHD .
ALLETRECTI(&BzA%) SE@. N AHD .
ALLSTRCTIICVOzTH) JE@. N LAND .
ALLETREC1I(CT2:T4) «E@. N AN .
ALLSTREZI(IZ:60) ~E@, 1 ' SANHD .

4 8§ ® o® % ¥ % ® ¥ ®

A T W e @ P T T R T T T

64

" { ALLSTREZH(E616%) <EQ. F Poyd G TO 420
CALL ERRELOGC"ERRORDZOVN)
L2320 COMTIRUE

[

CEaw END OF IWNTER-WARIABLE LOGIC CHECKES OW CARDS #1 E 2.
C

C

Cw¥*® YRITE AWNY RECORDS MWICH ARE IN ERROR.

CALL ERRCHEK

[EECTION § *# S dddd s st b s e e A S h A A R AR A A RN AR R AT AP AR R T R AN R R RS S

cRas COMPLETE PROCESSING OF DATA EET JUST EDITED, AMD BRETUREN TO START OW %=
E.-. HEXT ONWE. i FdadaFisshedishkesnanddFsasd iR E Rl E R FEE R R F A e AR R R A AT AN

[ww® MOVE PRESENT DATA SET IMTD PREWIOUS DATA STORAGE AREM.
po 500 1=1,3
OLDARERCI) = MKLLSTR{IL)
500 CONTIMUE
OUROBS = CUROBE

[FIHISH PRINTIWG PAGE, AMD GO BACK TO READ MEXT DATA ELOCK.

CALL WRAPUF(ALLSTE,3)
go TO 20

ciii gEcFIuH ‘ SRR SR RE R R R R AR REE SRR SRR RS R R R R R E R SRR R R LR LN
C*** KORMAL AND AEWORMAL TERMINATION PROCEDURES. *4#ssssssssiscddnnsvimnnnns

¥ MRITECA 1099}
108% FORMATC1X)

C*¥®%® [CLOSE ECH1DE DATA BASE. (THIS IS5 AM ENTRY POIMT WITHIW ERRLOG.]
CALL CLLGCT('ECE1DEB iy
C CALL CLLGST{'ESB1D®E)
ETOF VYEND OF CSEDIT.EB1®
CEwT® TERMIWNATION FOR CASE OF PRE-EDIT FAILUEE. :
199 WRITECE,109%)

STOF "PRE-EDIT FAILED = FIX DATA AND RE-RUM.'
EMND

End of the Cruise Specificatien Main Edit pregram for 1981 data.
TR T T TR R RN TSR RS R SR SER RS R RS R R R R R RS R RS R RN AR EREREREEERDE R L

65

Pt i ittt T R R AR R A R R R A R AR R AR

Beginning of the Cruise Specification Segquencing program for 1981 datas.

SUBRQUTIWE CS500CS

: LR]

C

C*®"* FPROGRAMMER: C. LONG.

Ce** PFHROGEAM: CSEQCS.81 WERE CALLED Cs500Cs.81

C

CE®* DATE: OCTOEER, 1%7E.

c
=&% PURPOSE o
- THIE PROGRAM EDITS THE FOLLOMING DATA WHICH [S w
b COHTAIMED IW THE CRUISE FILE. *
L 1.3 CRUISE MUMBER bl
® 2. DATE SAILED/PREVIDUS DATE RETURMED "
. .7 COMPLETED-TEIP FIELD OW PREWIOUS BET = 12° -
il 4.7 WESSEL CHARACTERISTICSE MUST MATLH -
A LR]

&% [HPUT EILES:
CS&## - [HPUT CRUISE FILE.
CE% - PREFIX WAMING COMVEWTIOM FOR IRPUT FILES.
#N% - CRUISE HWHUHBER.
LOGICAL DEVICE = 10.

PROMPT DEWICE - SOURCE OF USER COMMANDS.
LOODICAL DEVICE = 5.

wEd gUTPUT FILES:
PRINTER - DESTIWATION OF ALL PROGRAW OQUTPUT.Z
LOGICAL DEVICE = &.

#xd CUBROUTINES:
ADPF SUBROUTIHES:
WERFIT - WERIFIES THAT ALL CHARACTERS OCCURIMG IKW OKNE
STRING OCCUR [M AMOTHER.

IMFOMET SUBROUTINES:
FODEFMX - ALLOCATES AWD ODEFIWES LOGICAL FILEE.

#==4% PRIMARY VARJABLES:

STEIMG - CONTAIMS CURRENT DATA RECORD.

TEHP - HAS PART OF DATA RETURMED BY WERFIT.

DSESEQ - COWNTAINS CURRENT LOGICAL RECORD WUMBER.

CARSEQ@ - COMNTATMS CURREMT CARD SEQUEMWCE WUMBER.

AMYERR - SET ToO TRUE 1F AWY EERORE 15 EWNCOUMTERED.

TOTE®R - SET TO TRUE IF AMYERE 1% EVER TRUE AKD THEW PASSED.

IMFILE - COWNTAIME THE IWPUT FILE WNAHKE.

PEEVOH - STRIMWG COMTAIRIMG THE PREVIOUS CARD SEa 01
&M ASTERICEKE 1% PLACED IN COLUKM 1. WHEN EEMOVED
THIS SIGWIFIES A PREVIOUS CAED 1 15 PRESEMT.

=%& DESCRIPTION
THIS PROGRAM'S PRIMARY COWCERM IS5 THAT THE CARD SEQUEMCE OF THE

el B I I I B i A s A e N e R T R R R R R R R R R R R e R e B B R e A e A e B s B B B B I s B]

1514]

CRUISE SPECIFICATION DECK IS5 CODRRECT. THE ERROR CHECKS ARE

FPERFORMED PRIMARILY WITH DIRECT RECORD COMFARISONS USING THE
STRINGING FUMCTIONS AYAILABLE IM FORTRAW. THE FOLLOWIKG [3

FPERFORMED .

1) SUBROUTINWNE CSEQ@F1 |5 CALLED TO:
AY PROMPT FOR THE IWPUT FILE MAME AND EQUATE TO UNITS 10 ANKD

B) RENUMEBER THE [WPUT FILE TO HAVE STAHDARD KEYS BLGIWMIWG
WITH 1 AWD TMCREMEMTING EBY 1.
C} CHECE THE CRUISE MUMBER, COLUMNE 1-%3, TO MATCH THE CRUIGE
MUMEBEE® OF THE FILE MAME, COLUMM 5-5.
By CHECK FOR RECDRDPS WHOSE LEWGTH 15 WOT EQUAL TO 80 COLUMNE.
2£) THE CARD SEQUENCE WUMBER, COLUMN 5, IS5 CHECKEED TO BEGIH WITH
1 AWND TMCREMWMEMT B8Y 1 FOR EACH 3 CARD DATA BET.
I) THE FOLLOWINWNG FIELDS ARE WERIFIED TO IWCLUDE oMLY THE DIGITE
0123456 7EY
A) THE CRUISE WUMBER. COLUMKSE 1-3
By THE CARD SEQUEMCE WUMBER. COLUMME 4-5

wEd COMHON AEEA DEFIMITION.

LI I I s T 5 I I O O O IO - O T T o O o A e T B 5 B 5

COMMOWNJEREORY ANYERR, CARSER, DATSET, DSKSEQ, ELEVAL GRPCOD,

X MOGOD, STRIKG, TEMP, VALUE, TOTERR, ALLBLK, IMFILE
C
C *%% PROGRAM VARIABLE DEFINITIONS.
c
CHARACTER GRPCOD®1, STRIMG*B0, DATSET*8, CARSEQ+*2,
M TEMP*80, INFILE*20, PREVCD=E&O, FREVON*BO/ 170/,
P HEAD*™&0s%=** CS00CS.8&1 --- IKPUT FILE: v
X DIGITS*M0/7 0125454709 ¥
€
LOSICAL AMYERR/.FALSE.f, WOGOD, TOTERR, ALLBLK
€
INTEGER DSESEQ, ELEVAL, VALUE,
X IRET
€
5 FORMATCABD))
9 FORMAT(/Z20X,"RECORD NUMBER= ", &, ", =wwr,
1" IMVALID CARD CODE EMCOUNTERED.')
C
c**® ACTUAL BEGIMWNING OF PROGRAM LOGIC.
[H

11% CALL CEEQRPICHEAD)
CALL FODEFMXL{IRET 10, IMFILE,*STD"])
c
C*®® EET FIRET IWPUT DATA RECORD.
c
10 READCTID ,S)}ETRING
CARSEC=STRINGCL:25)
DSKSEQ=1
IF{CARSEQ.E@,."01%) GO To &0
CALL EJECTE(2)
HEITE(& ,¥) OSKESEQ

a7

t

AMD THE

c**% PEEOUF 1% CALLED TO FRIWT OUT THE RECORD IW ERROR
C RECORDS BRACEETIWNG THE RECORD IH ERROR.
C
20 IF{.NOT.AMYEER)Y GO TO 12
CALL POGROUPC10,DpEESEQ,3 3, 5TRIMG)
CALL EJECTE{S4&)
AHYERR=.FALSE.
TOTERR=.TRUE .
12 PREVECD=STRING
C
C*%% GET WNEXT IKPUT DATA RECORD.
C
READC10,5 END=9%)STRIMNG
CARSEQ=S5TRING(&:5)
DSEESEQ=05KSEQ+
CALL WERFITCT1,3,0IGITS)
CALL YERFIT(S,2,0IGITS)}
C
C**= |5 THE CARD TYFE VALID?
C
IF(FREWCDCS:5) .E@. STRIMG{(4$:5)) G0 TO 354
I[FCFREWCD(&:5) E@. *D1') G0 TO 31
IFCPREVWCDCL:=5) .E@. *02')} GO To %22
IF{FPREVED¢(&L:5) .E@. *O3'} GO To 353
PREVED(L S5 STRINGES:5)
GO TO &40
31 IF (STRIWGC4:5%) .EQ, "D2') co To 12
GO TO 34
52 IF (SETRIWNGE{&4=25) .E@. "03F") 6o T 12
Go To 34
33 IF (STRIKGE&:5Y .EQ. "Dy GO TO &0
34 CONTIRUE
CALL EJECTRLZ)
WRITELE,?) DEKSED
AMYTERR=.TRUE.
CO TO 20
L0 COMTIHUE
C .
C SAVE THE CARD SEQUEMCE 01 RECORD FOR LATER COMFRREIESOMNE
c .
75 PREVOWN=ESTRIME
GO TO 20
C
L THIS STATEMENWT 15 REACMED AT THE EWD OF FILE OW UMIT 10
c
% COWTIMUE
BACKESPACE 10
C
C CHECE THAT THE LAST CARD READ WAS A CAED 3

ITFESTRINGES 5D E@.°
CALL EJECTR(3)
WRITE(& 11003
1100 FORMAT(S" THE LAST

3y GO To 100

CARD READ WAS WOT A CARD 3/

a8

1 » THE FOLLOWING GROUP 15 PRIMTED ©QUT FOR CLARITY'!D
CALL PGROUP(10,DSKSEQ,3, 3, ETRING)
CALL EJECTEBLS5&)
100 CONTIHUWE
110 CONTIHUE
CALL EJECTR{1])
PRIMT * _ F'END OF CEODOQOCS.81"
RETURM
EWD

End of the Cruise Specification Segquencing pregram for 1781 data.
' E R LR L TSRS REZSEESEEEESESTEESESEREESEESRE TR R R U RS R L AR BN A BN A B B B B B B B B B B R

649

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical
Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price.
Microfiche copies cost $4.50. Recent issues of NOAA Technical Memorandums from the NMFS
Southwest Fisheries Science Center are listed below:

NOAA-TM-NMFS-SWFSC- 147 Survey of the abundance and distribution of pelagic
young-of-the-year rockfishes, Sebastes, off central California.
TW. ECHEVERRIA, W.H. LENARZ and C.A. REILLY
(September 1980)

148 United states agency for international development and
national marine fisheries service workshop on tropical fish
stock assessment, 5-26 July 1989, Honolulu, Hawaii.

J.J. POLCVINA and R.S. SHOMURA
{September 1990)

149 Summary of the 1988 U.S. tuna/porpoise observer data.
A.R. JACKSON
(September 1990)

150 Population monitoring of the Hawaiian Monk Seal, Monachus
schauinsfandi, and captive maintenance project at Kure Atoll, 1988.
J.R. HENDERSON and M.R. FINNEGAN
(September 1990)

151 The Hawaiian Monk Seal on Laysan Island, 1988.
T.C. JOHANQOS, B.L.. BECKER, M.A. BROWN, B.K. CHOY,
L.M. HURUKI, R.E. BRAINARD and R.L. WESTLAKE
(September 1990)

152 A personal computer based system for analog-to-digital and serial
communication data acquisition.
R.C. HOLLAND
(November 1980)

153 The nearshore physical oceanography off the central California
coast during May-June, 1889: A summary of CTD from juvenile
rockfish surveys.

F.B. SCHWING, S. RALSTON, D.M. HUSBY and W.H. LENARZ
{December 1990)

154 Proceedings of the second international conference on marine
debris 2-7 April, 1889, Honclulu, Hawaii. Volumes | & II.
R.S. SHOMURA and M.L. GODFREY (Editors)
{(December 1390)

155 The Hawaiian Monk Seal, Monachus schauinslandi, at Kure Atoll,
1982-83.
C.E. BOWLBY, P.D. SCOGGINS, R.T. WATSON and M.L. REDDY
(February 1991)

156 Research plan for marine turtle fibropapilloma results of a
December 1990 workshop.
G.H. BALAZS and S.G. POCLEY (Editors)
(February 1991)

	NOAA-TM-NMFS-SWFC-157V2.pdf
	Introduction
	Developmental history
	Data verification on fixed-field formats
	Error report output
	Input requirements to edit programs
	Management System
	Error report formats for phases1-3
	1 processing
	2 processing
	3 processhg
	bases 0.......................................
	V Named common block ERROR
	and calling programs
	VII Data flow and field reference sequence
	databases
	Error counts
	Error statements
	IX Acknowlegments and references
	during 1974-1978 for edit programs
	Corporation (CSC) Fortran language

